
dynast
Release 0.2.0

Kyung Hoi (Joseph) Min

May 09, 2022

INTRODUCTION:

1 Getting started 3
1.1 Installation . 3
1.2 Command-line structure . 3
1.3 Basic usage . 4

2 Pipeline Usage 7
2.1 Building the STAR index with ref . 7
2.2 Aligning FASTQs with align . 8
2.3 Calling consensus sequences with consensus . 9
2.4 Quantifying counts with count . 10
2.5 Estimating counts with estimate . 13
2.6 Control samples . 15

3 Technical Information 17
3.1 Consensus procedure . 17
3.2 Count procedure . 18
3.3 Estimate procedure . 20
3.4 Read groups . 22
3.5 Statistical estimation . 22

4 dynast 25
4.1 Subpackages . 25
4.2 Submodules . 60
4.3 Package Contents . 74

5 References 75

6 NASC-seq 77
6.1 Alignment . 77
6.2 Quantification . 77

7 scSLAM-seq 79
7.1 Alignment . 79
7.2 Quantification . 79

8 scNT-seq 81
8.1 Alignment . 81
8.2 Consensus . 81
8.3 Quantification . 82

9 sci-fate 83

i

9.1 Alignment . 83
9.2 Consensus . 83
9.3 Quantification . 83

10 Indices and tables 85

Bibliography 87

Python Module Index 89

Index 91

ii

dynast, Release 0.2.0

Warning: Dynast is currently in beta-testing and is still under active development. Usage may change without
warning.

INTRODUCTION: 1

dynast, Release 0.2.0

2 INTRODUCTION:

CHAPTER

ONE

GETTING STARTED

Welcome to dynast!

Dynast is a command-line pipeline that preprocesses data from metabolic labeling scRNA-seq experiments and quan-
tifies the following four mRNA species: unlabeled unspliced, unlabeled spliced, labeled unspliced and labeled spliced.
In addition, dynast can perform statistical estimation of these species through expectation maximization (EM) and
Bayesian inference. Please see Statistical estimation for more details on how the statistical estimation is performed.

1.1 Installation

The latest stable release of dynast is available on the Python Package Index (Pypi) and can be installed with pip:

pip install dynast-release

To install directly from the Git repository:

pip install git+https://github.com/aristoteleo/dynast-release

To install the latest development verson:

pip install git+https://github.com/aristoteleo/dynast-release@devel

Please note that not all features may be stable when using the development version.

1.2 Command-line structure

Dynast consists of four commands that represent four steps of the pipeline: ref, align, consensus, count, estimate.
This modularity allows users to add additional preprocessing between steps as they see fit. For instance, a user may
wish to run a custom step to mark and remove duplicates after the align step.

Command Description
ref Build a STAR index from a reference genome FASTA and GTF.
align Align FASTQs into an alignment BAM.
consensus Call consensus sequence for each sequenced mRNA molecule.
count Quantify unlabeled and labeled RNA.
estimate Estimate the fraction of labeled RNA via statistical estimation.

3

dynast, Release 0.2.0

1.3 Basic usage

Prerequisites:

• FASTQ files from a metabolic labeling scRNA-seq experiment

• [Optional] STAR genome index for the appropriate organism. Skip the first step if you already have this.

1.3.1 Build the STAR index

First, we must build a STAR index for the genome of the organism that was used in the experiment. For the purpose of
this section, we will be using the mouse (Mus musculus) as an example. Download the genome (DNA) FASTA and
gene annotations GTF. If you already have an appropriate STAR index, you do not need to re-generate it and may skip
to the next step.

dynast ref -i STAR Mus_musculus.GRCm38.dna.primary_assembly.fa.gz Mus_musculus.GRCm38.
→˓102.gtf.gz

where STAR is the directory to which we will be saving the STAR index.

1.3.2 Align FASTQs

Next, we align the FASTQs to the genome.

dynast align -i STAR -o align -x TECHNOLOGY CDNA_FASTQ BARCODE_UMI_FASTQ

where align is the directory to which to save alignment files, and TECHNOLOGY is a scRNA-seq technology. A list of
supported technologies can be found by running dynast --list. BARCODE_UMI_FASTQ is the FASTQ containing the
barcode and UMI sequences, whereas the CDNA_FASTQ is the FASTQ containing the biological cDNA sequences.

1.3.3 [Optional] Consensus

Optionally, we can call consensus sequences for each sequenced mRNA molecule.

dynast consensus -g Mus_musculus.GRCm38.102.gtf.gz --barcode-tag CB --umi-tag UB -o␣
→˓consensus align/Aligned.sortedByCoord.out.bam

where consensus is the directory to which to save the consensus-called BAM. Once the above command finishes, the
consensus directory will contain a new BAM file that can be used as input to the following step.

1.3.4 Quantify

Finally, we quantify the four RNA species of interest. Note that we re-use the gene annotations GTF.

dynast count -g Mus_musculus.GRCm38.102.gtf.gz --barcode-tag CB --umi-tag UB -o count --
→˓barcodes align/Solo.out/Gene/filtered/barcodes.tsv --conversion TC align/Aligned.
→˓sortedByCoord.out.bam

4 Chapter 1. Getting started

dynast, Release 0.2.0

where count is the directory to which to save RNA quantifications. We provide a filtered barcode list align/Solo.
out/Gene/filtered/barcodes.tsv, which was generated from the previous step, so that only these barcodes are
processed during quantification. We specify the experimentally induced conversion with --conversion. In this
example, our experiment introduces T-to-C conversions.

Once the above command finishes, the count directory will contain an adata.h5ad AnnData file containing all quan-
tification results.

1.3.5 [Optional] Estimate

Optionally, we can estimate the unlabeled and labeled counts by statistically modelling the labeling dynamics (see
Statistical estimation).

dynast estimate -o estimate count

where estimate is the directory to which to save RNA quantifications. We provide the directory that contains the
quantification results (i.e. -o option of dynast count).

Once the above command finishes, the estimate directory will contain an adata.h5ad AnnData file containing all
quantification and estimation results.

1.3. Basic usage 5

dynast, Release 0.2.0

6 Chapter 1. Getting started

CHAPTER

TWO

PIPELINE USAGE

This sections covers basic usage of dynast.

2.1 Building the STAR index with ref

Internally, dynast uses the STAR RNA-seq aligner to align reads to the genome [Dobin2013]. Therefore, we must
construct a STAR index to use for alignment. The dynast ref command is a wrapper around the STAR’s --runMode
genomeGenerate command, while also providing useful default parameters to limit memory usage, similar to Cell
Ranger. Existing STAR indices can be used interchangeably with ones generated through dynast. A genome FASTA
and gene annotation GTF are required to build the STAR index.

usage: dynast ref [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS] -i INDEX [-m␣
→˓MEMORY] fasta gtf

Build a STAR index from a reference

positional arguments:
fasta Genomic FASTA file
gtf Reference GTF file

optional arguments:
-h, --help Show this help message and exit
--tmp TMP Override default temporary directory
--keep-tmp Do not delete the tmp directory
--verbose Print debugging information
-t THREADS Number of threads to use (default: 8)
-m MEMORY Maximum memory used, in GB (default: 16)

required arguments:
-i INDEX Path to the directory where the STAR index will be generated

7

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger

dynast, Release 0.2.0

2.2 Aligning FASTQs with align

The dynast align command is a wrapper around STARsolo [Dobin2013]. Dynast automatically formats the argu-
ments to STARsolo to ensure the resulting alignment BAM contains information necessary for downstream processing.

Additionally, align sets a more lenient alignment score cutoff by setting --outFilterScoreMinOverLread 0.
3 --outFilterMatchNminOverLread 0.3 because the reads are expected to have experimentally-induced conver-
sions. The STARsolo defaults for both are 0.66. The --STAR-overrides argument can be used to pass arguments
directly to STAR.

dynast align outputs a different set of BAM tags in the alignment BAM depending on the type of sequencing tech-
nology specified. These are described in the following subsections.

usage: dynast align [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS] -i INDEX [-o␣
→˓OUT] -x TECHNOLOGY

[--strand {forward,reverse,unstranded}] [-w WHITELIST] [--overwrite]
[--STAR-overrides ARGUMENTS]
fastqs [fastqs ...]

Align FASTQs

positional arguments:
fastqs FASTQ files. If `-x smartseq`, this is a single manifest CSV␣

→˓file where the first
column contains cell IDs and the next two columns contain paths␣

→˓to FASTQs (the third
column may contain a dash `-` for single-end reads).

optional arguments:
-h, --help Show this help message and exit
--tmp TMP Override default temporary directory
--keep-tmp Do not delete the tmp directory
--verbose Print debugging information
-t THREADS Number of threads to use (default: 8)
--strand {forward,reverse,unstranded}

Read strandedness. (default: `forward`)
-w WHITELIST Path to file of whitelisted barcodes to correct to. If not␣

→˓provided, all barcodes are
used.

--overwrite Overwrite existing alignment files
--STAR-overrides ARGUMENTS

Arguments to pass directly to STAR.

required arguments:
-i INDEX Path to the directory where the STAR index is located
-o OUT Path to output directory (default: current directory)
-x TECHNOLOGY Single-cell technology used. `dynast --list` to view all␣

→˓supported technologies

8 Chapter 2. Pipeline Usage

dynast, Release 0.2.0

2.2.1 UMI-based technologies

For UMI-based technologies (such as Drop-seq, 10X Chromium, scNT-seq), the following BAM tags are written to the
alignment BAM.

• MD

• HI, AS for alignment index and score

• CR, CB for raw and corrected barcodes

• UR, UB for raw and corrected UMIs

2.2.2 Plate-based technologies

For plate-based technologies (such as Smart-Seq), the following BAM tags are written to the alignment BAM. See

• MD

• HI, AS for alignment index and score

• RG indicating the sample name

2.3 Calling consensus sequences with consensus

dynast consensus parses the alignment BAM to generate consensus sequences for each sequenced mRNA molecule
(see Consensus procedure).

usage: dynast consensus [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS] -g GTF [-
→˓o OUT] [--umi-tag TAG]

[--barcode-tag TAG] [--gene-tag TAG] [--strand {forward,reverse,
→˓unstranded}]

[--quality QUALITY] [--barcodes TXT] [--add-RS-RI]
bam

Generate consensus sequences

positional arguments:
bam Alignment BAM file that contains the appropriate UMI and barcode␣

→˓tags, specifiable with
`--umi-tag`, and `--barcode-tag`.

optional arguments:
-h, --help Show this help message and exit
--tmp TMP Override default temporary directory
--keep-tmp Do not delete the tmp directory
--verbose Print debugging information
-t THREADS Number of threads to use (default: 8)
-o OUT Path to output directory (default: current directory)
--umi-tag TAG BAM tag to use as unique molecular identifiers (UMI). If not␣

→˓provided, all reads are assumed
to be unique. (default: None)

--barcode-tag TAG BAM tag to use as cell barcodes. If not provided, all reads are␣
→˓assumed to be from a single

(continues on next page)

2.3. Calling consensus sequences with consensus 9

dynast, Release 0.2.0

(continued from previous page)

cell. (default: None)
--gene-tag TAG BAM tag to use as gene assignments (default: GX)
--strand {forward,reverse,unstranded}

Read strandedness. (default: `forward`)
--quality QUALITY Base quality threshold. When generating a consensus nucleotide␣

→˓at a certain position, the base
with smallest error probability below this quality threshold is␣

→˓chosen. If no base meets this
criteria, the reference base is chosen. (default: 27)

--barcodes TXT Textfile containing filtered cell barcodes. Only these barcodes␣
→˓will be processed.
--add-RS-RI Add custom RS and RI tags to the output BAM, each of which␣

→˓contain a semi-colon delimited list
of read names (RS) and alignment indices (RI) of the reads and␣

→˓alignments from which the
consensus is derived. This option is useful for debugging.

required arguments:
-g GTF Path to GTF file used to generate the STAR index

The resulting BAM will contain a collection of consensus alignments and a subset of original alignments (for those
alignments for which a consensus could not be determined). The latter are identical to those in the original BAM, while
the names of the former will be seemingly random sequences of letters and numbers (in reality, these are SHA256
checksums of the grouped read names). They will also contain the following modified BAM tags

• AS is now the sum of the alignment scores of the reads

• HI, the alignment index, is always 1

and the follwing additional BAM tags.

• RN indicating how many reads were used to generate the consensus

• RS, RI each containing a semicolon-delimited list of read names and their corresponding alignment indices (HI
tag in the original BAM) that were used to generate the consensus (only added if --add-RS-RI is provided)

2.4 Quantifying counts with count

dynast count parses the alignment BAM and quantifies the four RNA species (unlabeled unspliced, unlabeled
spliced, labeled unspliced, labeled spliced) and outputs the results as a ready-to-use AnnData H5AD file. In order
to properly quantify the above four species, the alignment BAM must contain specific BAM tags, depending on what
sequencing technology was used. If dynast align was used to generate the alignment BAM, dynast automatically
configures the appropriate BAM tags to be written.

usage: dynast count [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS] -g GTF --
→˓conversion CONVERSION [-o OUT]

[--umi-tag TAG] [--barcode-tag TAG] [--gene-tag TAG] [--strand
→˓{forward,reverse,unstranded}]

[--quality QUALITY] [--snp-threshold THRESHOLD] [--snp-min-coverage␣
→˓THRESHOLD] [--snp-csv CSV]

[--barcodes TXT] [--no-splicing | --exon-overlap {lenient,strict}] [-
→˓-control]

[--dedup-mode {auto,conversion,exon}] [--overwrite]
(continues on next page)

10 Chapter 2. Pipeline Usage

https://anndata.readthedocs.io/en/latest/

dynast, Release 0.2.0

(continued from previous page)

bam

Quantify unlabeled and labeled RNA

positional arguments:
bam Alignment BAM file that contains the appropriate UMI and barcode␣

→˓tags, specifiable with
`--umi-tag`, and `--barcode-tag`.

optional arguments:
-h, --help Show this help message and exit
--tmp TMP Override default temporary directory
--keep-tmp Do not delete the tmp directory
--verbose Print debugging information
-t THREADS Number of threads to use (default: 8)
-o OUT Path to output directory (default: current directory)
--umi-tag TAG BAM tag to use as unique molecular identifiers (UMI). If not␣

→˓provided, all reads are assumed
to be unique. (default: None)

--barcode-tag TAG BAM tag to use as cell barcodes. If not provided, all reads are␣
→˓assumed to be from a single

cell. (default: None)
--gene-tag TAG BAM tag to use as gene assignments (default: GX)
--strand {forward,reverse,unstranded}

Read strandedness. (default: `forward`)
--quality QUALITY Base quality threshold. Only bases with PHRED quality greater␣

→˓than this value will be
considered when counting conversions. (default: 27)

--snp-threshold THRESHOLD
Conversions with (# conversions) / (# reads) greater than this␣

→˓threshold will be considered a
SNP and ignored. (default: no SNP detection)

--snp-min-coverage THRESHOLD
For a conversion to be considered as a SNP, there must be at␣

→˓least this many reads mapping to
that region. (default: 1)

--snp-csv CSV CSV file of two columns: contig (i.e. chromosome) and genome␣
→˓position of known SNPs
--barcodes TXT Textfile containing filtered cell barcodes. Only these barcodes␣

→˓will be processed.
--no-splicing, --transcriptome-only

Do not assign reads a splicing status (spliced, unspliced,␣
→˓ambiguous) and ignore reads that

are not assigned to the transcriptome.
--exon-overlap {lenient,strict}

Algorithm to use to detect spliced reads (that overlap exons).␣
→˓May be `strict`, which assigns

reads as spliced if it only overlaps exons, or `lenient`, which␣
→˓assigns reads as spliced if it

does not overlap with any introns of at least one transcript.␣
→˓(default: lenient)
--control Indicate this is a control sample, which is used to detect SNPs.

(continues on next page)

2.4. Quantifying counts with count 11

dynast, Release 0.2.0

(continued from previous page)

--dedup-mode {auto,conversion,exon}
Deduplication mode for UMI-based technologies (required `--umi-

→˓tag`). Available choices are:
`auto`, `conversion`, `exon`. When `conversion` is used, reads␣

→˓that have at least one of the
provided conversions is prioritized. When `exon` is used, exonic␣

→˓reads are prioritized. By
default (`auto`), the BAM is inspected to select the appropriate␣

→˓mode.
--overwrite Overwrite existing files.

required arguments:
-g GTF Path to GTF file used to generate the STAR index
--conversion CONVERSION

The type of conversion(s) introduced at a single timepoint.␣
→˓Multiple conversions can be

specified with a comma-delimited list. For example, T>C and A>G␣
→˓is TC,AG. This option can be

specified multiple times (i.e. dual labeling), for each labeling␣
→˓timepoint.

2.4.1 Basic arguments

The --barcode-tag and --umi-tag arguments are used to specify what BAM tags should be used to differentiate cells
(barcode) and RNA molecules (UMI). If the former is not specified, all BAM alignments are assumed to be from a single
cell, and if the latter is not specified, all aligned reads are assumed to be unique (i.e. no read deduplication is performed).
If align was used to generate the alignment BAM, then --barcode-tag CB --umi-tag UB is recommended for
UMI-based technologies (see UMI-based technologies), and --barcode-tag RG is recommended for Plate-based
technologies (see Plate-based technologies).

The --strand argument can be used to specify the read strand of the sequencing technology. Usually, the default
(forward) is appropriate, but this argument may be of use for other technologies.

The --conversion argument is used to specify the type of conversion that is experimentally introduced as a two-
character string. For instance, a T>C conversion is represented as TC, which is the default. Multiple conversions
can be specified as a comma-delimited list, and --conversion may be specified multiple times to indicate multiple-
indexing experiments. For example, for an experiment that introduced T>C mutations at timepoint 1 and A>G and
C>G mutations at timepoint 2, the appropriate options would be --conversion TC --conversion AG,CG.

2.4.2 Detecting and filtering SNPs

dynast count has the ability to detect single-nucleotide polymorphisms (SNPs) by calculating the fraction of reads
with a mutation at a certain genomic position. --snp-threshold can be used to specify the proportion threshold
greater than which a SNP will be called at that position. All conversions/mutations at the genomic positions with SNPs
detected in this manner will be filtered out from further processing. In addition, a CSV file containing known SNP
positions can be provided with the --snp-csv argument. This argument accepts a CSV file containing two columns:
contig (i.e. chromosome) and genomic position of known SNPs.

12 Chapter 2. Pipeline Usage

dynast, Release 0.2.0

2.4.3 Read deduplication modes

The --dedup-mode option is used to select how duplicate reads should be deduplicated for UMI-based technologies
(i.e. --umi-tag is provided). Two different modes are supported: conversion and exon. The former prioritizes
reads that have at least one conversions provided by --conversion. The latter prioritizes exonic reads. See quant for
a more technical description of how deduplication is performed. Additionally, see Consensus procedure to get an idea
of why selecting the correct option may be important.

By default, the --dedup-mode is set to auto, which sets the deduplication mode to exon if the input BAM is detected
to be a consensus-called BAM (a BAM generated with dynast consensus). Otherwise, it is set to conversion.
This option has no effect for non-UMI technologies.

2.5 Estimating counts with estimate

The fraction of labeled RNA is estimated with the dynast estimate command. Whereas dynast count produces
naive UMI count matrices, dynast estimate statistically models labeling dynamics to estimate the true fraction
of labeled RNA (and then in turn uses this fraction to split the total UMI counts into unlabeled and labeled RNA).
See Statistical estimation of a technical overview of this process. In this section, we will simply be describing the
command-line usage of this command.

usage: dynast estimate [-h] [--tmp TMP] [--keep-tmp] [--verbose] [-t THREADS]
[--reads {total,transcriptome,spliced,unspliced}] [-o OUT] [--

→˓groups CSV]
[--ignore-groups-for-pi] [--genes TXT] [--cell-threshold COUNT] [-

→˓-cell-gene-threshold COUNT]
[--downsample NUM] [--downsample-mode MODE] [--control] [--p-e P_

→˓E]
count_dirs [count_dirs ...]

Estimate fraction of labeled RNA

positional arguments:
count_dirs Path to directory that contains `dynast count` output. When␣

→˓multiple are provided, the
barcodes in each of the count directories are suffixed with `-i`␣

→˓where i is a 0-indexed
integer.

optional arguments:
-h, --help Show this help message and exit
--tmp TMP Override default temporary directory
--keep-tmp Do not delete the tmp directory
--verbose Print debugging information
-t THREADS Number of threads to use (default: 8)
--reads {total,transcriptome,spliced,unspliced}

Read groups to perform estimation on. This option can be used␣
→˓multiple times to estimate

multiple groups. (default: all possible reads groups)
-o OUT Path to output directory (default: current directory)
--groups CSV CSV containing cell (barcode) groups, where the first column is␣

→˓the barcode and the second is
the group name the cell belongs to. Cells will be combined per␣

→˓group for estimation of (continues on next page)

2.5. Estimating counts with estimate 13

dynast, Release 0.2.0

(continued from previous page)

parameters specified by `--groups-for`.
--ignore-groups-for-pi

Ignore cell groupings when estimating the fraction of labeled␣
→˓RNA. This option only has an

effect when `--groups` is also specified.
--genes TXT Textfile containing list of genes to use. All other genes will␣

→˓be treated as if they do not
exist.

--cell-threshold COUNT
A cell must have at least this many reads for correction.␣

→˓(default: 1000)
--cell-gene-threshold COUNT

A cell-gene pair must have at least this many reads for␣
→˓correction. (default: 16)
--downsample NUM Downsample the number of reads (UMIs). If a decimal between 0␣

→˓and 1 is given, then the number
is interpreted as the proportion of remaining reads. If an␣

→˓integer is given, the number is
interpreted as the absolute number of remaining reads.

--downsample-mode MODE
Downsampling mode. Can be one of: `uniform`, `cell`, `group`. If␣

→˓`uniform`, all reads (UMIs)
are downsampled uniformly at random. If `cell`, only cells that␣

→˓have more reads than the
argument to `--downsample` are downsampled to exactly that␣

→˓number. If `group`, identical to
`cell` but per group specified by `--groups`.

--control Indicate this is a control sample, only the background mutation␣
→˓rate will be estimated.
--p-e P_E Textfile containing a single number, indicating the estimated␣

→˓background mutation rate

2.5.1 Estimation thresholds

The --cell-threshold and --cell-gene-threshold arguments control the minimum number of reads that a cell
and cell-gene combination must have for accurate estimation. By default, these are 1000 and 16 respectively. Any
cells with reads less than the former are excluded from estimation, and the same goes for any genes within a cell that
has less reads than the latter. If --groups is also provided, then these thresholds apply to each cell group instead of
each cell individually. Internally, --cell-threshold is used to filter cells before estimating the average conversion
rate in labeled RNA (see Induced rate estimation (p_c)), and --cell-gene-threshold is used to filter cell-gene
combinations before estimating the fraction of new RNA (see Bayesian inference (\pi_g)).

14 Chapter 2. Pipeline Usage

dynast, Release 0.2.0

2.5.2 Estimation on a subset of RNA species

The --reads argument controls which RNA species to run the estimation procedure on. By default, all possible RNA
species, minus ambiguous reads, are used. This argument can take on the following values: total, transcriptome,
spliced, unspliced (see Read groups). The value of this argument specifies which group of unlabeled/labeled RNA
counts will be estimated. For instance, --reads spliced will run statistical estimation on unlabeled/labeled spliced
reads. This option may be provided multiple times to run estimation on multiple groups. The procedure involves
estimating the conversion rate of unlabeled and labeled RNA, and modeling the fraction of new RNA as a binomial
mixture model (see Statistical estimation).

2.5.3 Grouping cells

Sometimes, grouping read counts across cells may provide better estimation results, especially in the case of droplet-
based methods, which result in fewer reads per cell and gene compared to plate-based methods. The --groups argu-
ment can be used to provide a CSV of two columns: the first containing the cell barcodes and the second containing
group names that each cell belongs to. Estimation is then performed on a per-group basis by combining the read counts
across all cells in each group. This strategy may be applied across different samples, simply by specifying multiple
input directories. In this case, the number of group CSVs specified with --groups must match the number of input
directories. For example, when providing two input directories ./input1 and ./input2, with the intention of group-
ing cells across these two samples, two group CSVs, groups1.csv and groups2.csv must be provided where the
former are groups for barcodes in the first sample, and the latter are groups for barcodes in the second sample. The
group names may be shared across samples. The output AnnData will still contain reads per cell.

Cell groupings provided this way may be ignored for estimation of the fraction of labeled RNA (see Bayesian inference
(\pi_g)) by providing the --ignore-groups-for-pi flag. This flag may be used only in conjunction with --groups,
and when it is provided, estimation of the fraction of labeled RNA is performed per cell, while estimation of background
and induced mutation rates are still done per group.

2.5.4 Downsampling

Downsampling UMIs uniformly, per cell, or per cell group may be useful to significantly reduce runtime while trou-
bleshooting pipeline parameters (or just to quickly get some preliminary results). Dynast can perform downsampling
when the --downsample argument is used. The value of this argument may either be an integer indicating the number
of UMIs to retain or a proportion between 0 and 1 indicating the proportion of UMIs to retain. Additionally, the down-
sampling mode may be specified with the --downsample-mode argument, which takes one of the following three
parameters: uniform, cell, group. uniform is the default that downsamples UMIs uniformly at random. When
cell is provided, the value of --downsample may only be an integer specifying the threshold to downsample cells to.
Only cells with UMI counts greater than this value will be downsampled to exactly this value. group works the same
way, but for cell groups and may be used only in conjunction with --groups.

2.6 Control samples

Control samples may be used to find common SNPs and directly estimate the conversion rate of unlabeled RNA (see
Background estimation (p_e)). Normally, the latter is estimating using the reads directly. However, it is possible to use a
control sample (prepared in absence of the experimental introduction of conversions) to calculate this value directly. In
addition, SNPs can be called in the control sample, and these called SNPs can be used when running the test sample(s)
(see Detecting and filtering SNPs for SNP arguments). Note that SNP calling is done with dynast count.

A typical workflow for a control sample is the following.

2.6. Control samples 15

dynast, Release 0.2.0

dynast count --control --snp-threshold 0.5 [...] -o control_count --conversion TC -g GTF.
→˓gtf CONTROL.bam
dynast estimate --control -o control_estimate control_count

Where [...] indicates the usual options that would be used for dynast count if this were not control samples. See
Basic arguments for these options.

The dynast count command detects SNPs from the control sample and outputs them to the file snps.csv in the
output directory control_count. The dynast estimate calculates the background conversion rate of unlabeled
RNA to the file p_e.csv in the output directory control_estimate. These files can then be used as input when
running the test sample.

dynast count --snp-csv control_count/snps.csv -o test_count [...] INPUT.bam
dynast estimate --p-e control_estimate/p_e.csv -o test_estimate test_count

The above set of commands runs quantification and estimation on the test sample using the SNPs detected from the
control sample (control_count/snps.csv) and the background conversion rate estimated from the control sample
(control_estimate/p_e.csv).

16 Chapter 2. Pipeline Usage

CHAPTER

THREE

TECHNICAL INFORMATION

This section details technical information of the quantification and statistical estimation procedures of the dynast
consensus, dynast count and dynast estimate commands. Descriptions of dynast ref and dynast align
commands are in Pipeline Usage.

3.1 Consensus procedure

dynast consensus procedure generates consensus sequences for each mRNA molecule that was present in the sam-
ple. It relies on sequencing the same mRNA molecule (often distinguished using UMIs for UMI-based technologies, or
start and end alignment positions for non-UMI technologies) multiple times, to obtain a more confident read sequence.

Why don’t we just perform UMI-deduplication (by just selecting a single read among the reads that share the same
UMI) and call it a day? Though it seems counterintuitive, reads sharing the same UMI may originate from different
regions of the same mRNA, as [Qiu2020] (scNT-seq) observed in Extended Data Fig.1b.

Therefore, simply selecting one read and discarding the rest will cause a bias toward unlabeled reads because the
selected read may happen to have no conversions, while all the other (discarded) reads do. Therefore, we found it
necessary to implement a consensus-calling procedure, which works in the following steps. Here, we assume cell
barcodes are available (--barcode-tag is provided), but the same procedure can be performed in the absence of
cell barcodes by assuming all reads were from a single cell. Additionally, we will use the term read and alignment
interchangeably because only a single alignment (see the note below) from each read will be considered.

1. Alignments in the BAM are grouped into UMI groups. In the case of UMI-based technologies (--umi-tag is
provided), a UMI group is defined as the set of alignments that share the same cell barcode, UMI, and gene. For
alignments with the --gene-tag tag, assigning these into a UMI group is trivial. For alignments without this
tag, it is assigned to the gene whose gene body fully contains the alignment. If multiple genes are applicable, the

17

https://www.nature.com/articles/s41592-020-0935-4/figures/7

dynast, Release 0.2.0

alignment is not assigned a UMI group and output to the resulting BAM as-is. For non-UMI-based technologies,
the start and end positions of the alignment are used as a pseudo-UMI.

2. For each UMI group, the consensus base is taken for every genomic location that is covered by at least one
alignment in the group. The consensus base is defined as the base with the highest sum of quality scores of
that base among all alignments in the group. Loosely, this is proportional to the conditional probability of each
base being a sequencing error. If the consensus base score does not exceed the score specified with --quality,
then the reference base is taken instead. Once this is done for every covered genomic location, the consensus
alignment is output to the BAM, and the UMI group is discarded (i.e. not written to the BAM).

Note: Only primary, not-duplicate, mapped BAM entries are considered (equivalent to the 0x4, 0x100, 0x400 BAM
flags being unset). For paired reads, only properly paired alignments (0x2 BAM flag being set) are considered. Addi-
tionally, if --barcode-tag or --umi-tag are provided, only BAM entries that have these tags are considered. Any
alignments that do not satisfy all of these conditions are not written to the output BAM.

3.2 Count procedure

dynast count procedure consists of three steps:

1. parse

2. snp

3. quant

3.2.1 parse

1. All gene and transcript information are parsed from the gene annotation GTF (-g) and saved as Python pickles
genes.pkl.gz and transcripts.pkl.gz, respectively.

2. All aligned reads are parsed from the input BAM and output to conversions.csv and alignments.csv. The
former contains a line for every conversion, and the latter contains a line for every alignment. Note that no
conversion filtering (--quality) is performed in this step. Two .idx files are also output, corresponding to
each of these CSVs, which are used downstream for fast parsing. Splicing types are also assigned in this step if
--no-splicing was not provided.

Note: Only primary, not-duplicate, mapped BAM entries are considered (equivalent to the 0x4, 0x100, 0x400 BAM
flags being unset). For paired reads, only properly paired alignments (0x2 BAM flag being set) are considered. Addi-
tionally, if --barcode-tag or --umi-tag are provided, only BAM entries that have these tags are considered.

3.2.2 snp

This step is skipped if --snp-threshold is not specified.

1. Read coverage of the genome is computed by parsing all aligned reads from the input BAM and output to
coverage.csv.

2. SNPs are detected by calculating, for every genomic position, the fraction of reads with a conversion at that
position over its coverage. If this fraction is greater than --snp-threshold, then the genomic position and the
specific conversion is written to the output file snps.csv. Any conversion with PHRED quality less than or
equal to --quality is not counted as a conversion. Additionally, --snp-min-coverage can be used to specify

18 Chapter 3. Technical Information

dynast, Release 0.2.0

the minimum coverage any detected SNP must have. Any sites that have less than this coverage are ignored (and
therefore not labeled as SNPs).

3.2.3 quant

1. For every read, the numbers of each conversion (A>C, A>G, A>T, C>A, etc.) and nucleotide content (how many
of A, C, G, T there are in the region that the read aligned to) are counted. Any SNPs provided with --snp-csv or
detected from the snp step are not counted. If both are present, the union is used. Additionally, Any conversion
with PHRED quality less than or equal to --quality is not counted as a conversion.

2. For UMI-based technologies, reads are deduplicated by the following order of priority: 1) reads that have at least
one conversion specified with --conversion, 2) read that aligns to the transcriptome (i.e. exon-only), 3) read
that has the highest alignment score, and 4) read with the most conversions specified with --conversion. If
multiple conversions are provided, the sum is used. Reads are considered duplicates if they share the same bar-
code, UMI, and gene assignment. For plate-based technologies, read deduplication should have been performed
in the alignment step (in the case of STAR, with the --soloUMIdedup Exact), but in the case of multimapping
reads, it becomes a bit more tricky. If a read is multimapping such that some alignments map to the transcrip-
tome while some do not, the transcriptome alignment is taken (there can not be multiple transcriptome align-
ments, as this is a constraint within STAR). If none align to the transcriptome and the alignments are assigned
to multiple genes, the read is dropped, as it is impossible to assign the read with confidence. If none align to
the transcriptome and the alignments are assigned multiple velocity types, the velocity type is manually set to
ambiguous and the first alignment is kept. If none of these cases are true, the first alignment is kept. The final
deduplicated/de-multimapped counts are output to counts_{conversions}.csv, where {conversions} is
an underscore-delimited list of all conversions provided with --conversion.

Note: All bases in this file are relative to the forward genomic strand. For example, a read mapped to a gene on the
reverse genomic strand should be complemented to get the actual bases.

3.2.4 Output Anndata

All results are compiled into a single AnnData H5AD file. The AnnData object contains the following:

• The transcriptome read counts in .X. Here, transcriptome reads are the mRNA read counts that are usually output
from conventional scRNA-seq quantification pipelines. In technical terms, these are reads that contain the BAM
tag provided with the --gene-tag (default is GX).

• Unlabeled and labeled transcriptome read counts in .layers['X_n_{conversion}'] and .
layers['X_l_{conversion}'].

The following layers are also present if --no-splicing or --transcriptome-only was NOT specified.

• The total read counts in .layers['total'].

• Unlabeled and labeled total read counts in .layers['unlabeled_{conversion}'] and .
layers['labeled_{conversion}'].

• Spliced, unspliced and ambiguous read counts in .layers['spliced'], .layers['unspliced'] and .
layers['ambiguous'].

• Unspliced unlabeled, unspliced labeled, spliced unlabeled, spliced labeled read counts in .
layers['un_{conversion}'], .layers['ul_{conversion}'], .layers['sn_{conversion}']
and .layers['sl_{conversion}'] respectively.

The following equalities always hold for the resulting Anndata.

• .layers['total'] == .layers['spliced'] + .layers['unspliced'] + .layers['ambiguous']

3.2. Count procedure 19

dynast, Release 0.2.0

The following additional equalities always hold for the resulting Anndata in the case of single labeling (--conversion
was specified once).

• .X == .layers['X_n_{conversion}'] + .layers['X_l_{conversion}']

• .layers['spliced'] == .layers['sn_{conversion}'] + .layers['sl_{conversion}']

• .layers['unspliced'] == .layers['un_{conversion}'] + .layers['ul_{conversion}']

Tip: To quantify splicing data from conventional scRNA-seq experiments (experiments without metabolic labeling),
we recommend using the kallisto | bustools pipeline.

3.3 Estimate procedure

dynast estimate procedure consists of two steps:

1. aggregate

2. estimate

3.3.1 aggregate

For each cell and gene and for each conversion provided with --conversion, the conversion counts are aggregated
into a CSV file such that each row contains the following columns: cell barcode, gene, conversion count, nucleotide
content of the original base (i.e. if the conversion is T>C, this would be T), and the number of reads that have this
particular barcode-gene-conversion-content combination. This procedure is done for all read groups that exist (see
Read groups).

3.3.2 estimate

1. The background conversion rate 𝑝𝑒 is estimated, if --p-e was not provided (see Background estimation (p_e)).
If --p-e was provided, this value is used and estimation is skipped. 𝑝𝑒.

2. The induced conversion rate 𝑝𝑐 is estimated using an expectation maximization (EM) approach, for each con-
version provided with --conversion (see Induced rate estimation (p_c)). 𝑝𝑐 where {conversion} is an
underscore-delimited list of each conversion (because multiple conversions can be introduced in a single time-
point). This step is skipped for control samples with --control.

3. Finally, the fraction of labeled RNA per cell 𝜋𝑐 and per cell-gene 𝜋𝑔 are estimated. The resulting fractions are
written to CSV files named pi_c_xxx.csv and pi_xxx.csv, where the former contains estimations per cell
and the latter contains estimations per cell-gene.

3.3.3 Output Anndata

All results are compiled into a single AnnData H5AD file. The AnnData object contains the following:

• The transcriptome read counts in .X. Here, transcriptome reads are the mRNA read counts that are usually output
from conventional scRNA-seq quantification pipelines. In technical terms, these are reads that contain the BAM
tag provided with the --gene-tag (default is GX).

20 Chapter 3. Technical Information

https://www.kallistobus.tools/

dynast, Release 0.2.0

• Unlabeled and labeled transcriptome read counts in .layers['X_n_{conversion}'] and .
layers['X_l_{conversion}']. If --reads transcriptome was specified, the estimated counts are
in .layers['X_n_{conversion}_est'] and .layers['X_l_{conversion}_est']. {conversion} is an
underscore-delimited list of each conversion provided with --conversion when running dynast count.

• Per cell estimated parameters in corresponding columns of .obs. These include the estimated 𝑝𝑒 in .
obs['p_e'], 𝑝𝑐 in .obs['p_c_{conversion}'], and per cell estimated fractions of labeled RNA in
.obs['pi_c_{group}_{conversion}']. There is one column for each possible read group. For
instance, if transcriptome and spliced read groups are available, two columns with the names
pi_c_transcriptome_{conversion} and pi_c_spliced_{conversion} are added.

The following layers are also present if --no-splicing or --transcriptome-only was NOT specified when run-
ning dynast count.

• The total read counts in .layers['total'].

• Unlabeled and labeled total read counts in .layers['unlabeled_{conversion}'] and .
layers['labeled_{conversion}']. If --reads total is specified, the estimated counts are in .
layers['unlabeled_{conversion}_est'] and .layers['labeled_{conversion}_est'].

• Spliced, unspliced and ambiguous read counts in .layers['spliced'], .layers['unspliced'] and .
layers['ambiguous'].

• Unspliced unlabeled, unspliced labeled, spliced unlabeled, spliced labeled read counts in .
layers['un_{conversion}'], .layers['ul_{conversion}'], .layers['sn_{conversion}']
and .layers['sl_{conversion}'] respectively. If --reads spliced and/or --reads unspliced was
specified, layers with estimated counts are added. These layers are suffixed with _est, analogous to total counts
above.

In addition to the equalities listed in the quant section, the following inequalities always hold for the resulting Anndata.

• .X >= .layers['X_n_{conversion}_est'] + .layers['X_l_{conversion}_est']

• .layers['spliced'] >= .layers['sn_{conversion}_est'] + .layers['sl_{conversion}_est']

• .layers['unspliced'] >= .layers['un_{conversion}_est'] + .layers['ul_{conversion}_est']

Tip: To quantify splicing data from conventional scRNA-seq experiments (experiments without metabolic labeling),
we recommend using the kallisto | bustools pipeline.

3.3.4 Caveats

The statistical estimation procedure described above comes with some caveats.

• The induced conversion rate (𝑝𝑐) can not be estimated for cells with too few reads (defined by the option
--cell-threshold).

• The fraction of labeled RNA (𝜋𝑔) can not be estimated for cell-gene combinations with too few reads (defined
by the option --cell-gene-threshold).

For statistical definitions of these variables, see Statistical estimation.

Therefore, for low coverage data, we expect many cell-gene combinations to not have any estimations in the Anndata
layers prefixed with _est, indicated with zeros. It is possible to construct a boolean mask that contains True for
cell-gene combinations that were successfully estimated and False otherwise. Note that we are using total reads.

3.3. Estimate procedure 21

https://www.kallistobus.tools/

dynast, Release 0.2.0

estimated_mask = ((adata.layers['labeled_{conversion}'] + adata.layers['unlabeled_
→˓{conversion}']) > 0) & \

((adata.layers['labeled_{conversion}_est'] + adata.layers['unlabeled_{conversion}_est
→˓']) > 0)

Similarly, it is possible to construct a boolean mask that contains True for cell-gene combinations for which estimation
failed (either due to having too few reads mapping at the cell level or the cell-gene level) and False otherwise.

failed_mask = ((adata.layers['labeled_{conversion}'] + adata.layers['unlabeled_
→˓{conversion}']) > 0) & \

((adata.layers['labeled_{conversion}_est'] + adata.layers['unlabeled_{conversion}_est
→˓']) == 0)

The same can be done with other Read groups.

3.4 Read groups

Dynast separates reads into read groups, and each of these groups are processed together.

• total: All reads. Used only when --no-splicing or --transcriptome-only is not used.

• transcriptome: Reads that map to the transcriptome. These are reads that have the GX tag in the BAM (or
whatever you provide for the --gene-tag argument). This group also represents all reads when --no-splicing
or --transcriptome-only is used.

• spliced: Spliced reads

• unspliced: Unspliced reads

• ambiguous: Ambiguous reads

The latter three groups are mutually exclusive.

3.5 Statistical estimation

Dynast can statistically estimate unlabeled and labeled RNA counts by modeling the distribution as a binomial mixture
model [Jürges2018]. Statistical estimation can be run with dynast estimate (see estimate).

3.5.1 Overview

First, we define the following model parameters. For the remainder of this section, let the conversion be T>C. Note
that all parameters are calculated per barcode (i.e. cell) unless otherwise specified.

𝑝𝑒 : average conversion rate in unlabeled RNA
𝑝𝑐 : average conversion rate in labeled RNA
𝜋𝑔 : fraction of labeled RNA for gene 𝑔
𝑦 : number of observed T>C conversions (in a read)
𝑛 : number of T bases in the genomic region (a read maps to)

Then, the probability of observing 𝑘 conversions given the above parameters is

P(𝑘; 𝑝𝑒, 𝑝𝑐, 𝑛, 𝜋) = (1− 𝜋𝑔)𝐵(𝑘;𝑛, 𝑝𝑒) + 𝜋𝑔𝐵(𝑘;𝑛, 𝑝𝑐)

22 Chapter 3. Technical Information

dynast, Release 0.2.0

where 𝐵(𝑘, 𝑛, 𝑝) is the binomial PMF. The goal is to calculate 𝜋𝑔 , which can be used the split the raw counts to get
the estimated counts. We can extract 𝑘 and 𝑛 directly from the read alignments, while calculating 𝑝𝑒 and 𝑝𝑐 is more
complicated (detailed below).

3.5.2 Background estimation (𝑝𝑒)

If we have control samples (i.e. samples without the conversion-introducing treatment), we can calculate 𝑝𝑒 directly
by simply calculating the mutation rate of T to C. This is exactly what dynast does for --control samples. All cells
are aggregated when calculating 𝑝𝑒 for control samples.

Otherwise, we need to use other mutation rates as a proxy for the real T>C background mutation rate. In this case, 𝑝𝑒
is calculated as the average conversion rate of all non-T bases to any other base. Mathematically,

𝑝𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑟(𝐴,𝐶), 𝑟(𝐴,𝐺), · · · , 𝑟(𝐺,𝑇))

where 𝑟(𝑋,𝑌) is the observed conversion rate from X to Y, and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the function that calculates the average of
its arguments. Note that we do not use the conversion rates of conversions that start with a T. This is because T>C is
our induced mutation, and this artificially deflates the T>A, T>G mutation rates (which can skew our 𝑝𝑒 estimation to
be lower than it should). In the event that multiple conversions are of interest, and they span all four bases as the initial
base, then 𝑝𝑒 estimation falls back to using all other conversions (regardless of start base).

3.5.3 Induced rate estimation (𝑝𝑐)

𝑝𝑐 is estimated via an expectation maximization (EM) algorithm by constructing a sparse matrix 𝐴 where each element
𝑎𝑘,𝑛 is the number of reads with 𝑘 T>C conversions and 𝑛 T bases in the genomic region that each read align to.
Assuming 𝑝𝑒 < 𝑝𝑐, we treat 𝑎𝑘,𝑛 as missing data if greater than or equal to 1% of the count is expected to originate
from the 𝑝𝑒 component. Mathematically, 𝑎𝑘,𝑛 is excluded if

𝑒𝑘,𝑛 = 𝐵(𝑘, 𝑛, 𝑝𝑒) ·
∑︁
𝑘′≥𝑘

𝑎𝑘′,𝑛 > 0.01𝑎𝑘,𝑛

Let 𝑋 = {(𝑘1, 𝑛1), · · · } be the excluded data. The E step fills in the excluded data by their expected values given the
current estimate 𝑝(𝑡)𝑐 ,

𝑎
(𝑡+1)
𝑘,𝑛 =

∑︀
(𝑘′,𝑛)̸∈𝑋 𝐵(𝑘, 𝑛, 𝑝

(𝑡)
𝑐) · 𝑎𝑘′,𝑛∑︀

(𝑘′,𝑛) ̸∈𝑋 𝐵(𝑘′, 𝑛, 𝑝
(𝑡)
𝑐)

The M step updates the estimate for 𝑝𝑐

𝑝(𝑡+1)
𝑐 =

∑︀
𝑘,𝑛 𝑘𝑎

(𝑡+1)
𝑘,𝑛∑︀

𝑘,𝑛 𝑛𝑎
(𝑡+1)
𝑘,𝑛

3.5.4 Bayesian inference (𝜋𝑔)

The fraction of labeled RNA per cell 𝜋𝑐 and per cell-gene 𝜋𝑔 are estimated with Bayesian inference using the binomial
mixture model described above. A Markov chain Monte Carlo (MCMC) approach is applied using the 𝑝𝑒, 𝑝𝑐, and the
matrix 𝐴 found/estimated in previous steps. This estimation procedure is implemented with pyStan, which is a Python
interface to the Bayesian inference package Stan. The Stan model definition is here.

3.5. Statistical estimation 23

https://pystan.readthedocs.io/en/latest/
https://mc-stan.org/
https://github.com/aristoteleo/dynast-release/blob/main/dynast/models/pi.stan

dynast, Release 0.2.0

24 Chapter 3. Technical Information

CHAPTER

FOUR

DYNAST

4.1 Subpackages

4.1.1 dynast.benchmarking

Submodules

dynast.benchmarking.simulation

Module Contents

Functions

generate_sequence(k, seed=None) Generate a random genome sequence of length k.
simulate_reads(sequence, p_e, p_c, pi, l=100,
n=100, seed=None)

Simulate n reads of length l from a sequence.

initializer(model)

estimate(df_counts, p_e, p_c, pi, estimate_p_e=False,
estimate_p_c=False, estimate_pi=True, model=None,
nasc=False)
_simulate(p_e, p_c, pi, sequence=None,
k=10000, l=100, n=100, estimate_p_e=False, es-
timate_p_c=False, estimate_pi=True, seed=None,
model=None, nasc=False)
simulate(p_e, p_c, pi, sequence=None, k=10000,
l=100, n=100, n_runs=16, n_threads=8, es-
timate_p_e=False, estimate_p_c=False, esti-
mate_pi=True, model=None, nasc=False)
simulate_batch (p_e, p_c, pi, l, n, estimate_p_e,
estimate_p_c, estimate_pi, n_runs, n_threads, model,
nasc=False)

Helper function to run simulations in batches.

plot_estimations(X, Y, n_runs, means, truth,
ax=None, box=True, tick_decimals=1, title=None,
xlabel=None, ylabel=None)

25

dynast, Release 0.2.0

Attributes

__model

_pi_model

dynast.benchmarking.simulation.generate_sequence(k, seed=None)
Generate a random genome sequence of length k.

Parameters

• k (int) – length of the sequence

• seed (int, optional) – random seed, defaults to None

Returns a random sequence

Return type str

dynast.benchmarking.simulation.simulate_reads(sequence, p_e, p_c, pi, l=100, n=100, seed=None)
Simulate n reads of length l from a sequence.

Parameters

• sequence (str) – sequence to generate the reads from

• p_e (float) – background specific mutation rate. This is the rate a specific base mutates to
another specific base (i.e. T>C, A>G, . . .)

• p_c (float) – T>C mutation rate in labeled RNA

• pi (float) – fraction of labeled RNA

• l (int, optional) – length of each read, defaults to 100

• n (int, optional) – number of reads to simulate, defaults to 100

• seed (int, optional) – random seed, defaults to None

Returns a dataframe with each read as a row and the number of conversions and base content as the
columns

Return type pandas.DataFrame

dynast.benchmarking.simulation.__model

dynast.benchmarking.simulation._pi_model

dynast.benchmarking.simulation.initializer(model)

dynast.benchmarking.simulation.estimate(df_counts, p_e, p_c, pi, estimate_p_e=False,
estimate_p_c=False, estimate_pi=True, model=None,
nasc=False)

dynast.benchmarking.simulation._simulate(p_e, p_c, pi, sequence=None, k=10000, l=100, n=100,
estimate_p_e=False, estimate_p_c=False, estimate_pi=True,
seed=None, model=None, nasc=False)

26 Chapter 4. dynast

dynast, Release 0.2.0

dynast.benchmarking.simulation.simulate(p_e, p_c, pi, sequence=None, k=10000, l=100, n=100,
n_runs=16, n_threads=8, estimate_p_e=False,
estimate_p_c=False, estimate_pi=True, model=None,
nasc=False)

dynast.benchmarking.simulation.simulate_batch(p_e, p_c, pi, l, n, estimate_p_e, estimate_p_c,
estimate_pi, n_runs, n_threads, model, nasc=False)

Helper function to run simulations in batches.

dynast.benchmarking.simulation.plot_estimations(X, Y, n_runs, means, truth, ax=None, box=True,
tick_decimals=1, title=None, xlabel=None,
ylabel=None)

4.1.2 dynast.estimation

Submodules

dynast.estimation.p_c

Module Contents

Functions

read_p_c(p_c_path, group_by=None) Read p_c CSV as a dictionary, with group_by columns
as keys.

binomial_pmf (k, n, p) Numbaized binomial PMF function for faster calcula-
tion.

expectation_maximization_nasc(values, p_e,
threshold=0.01)

NASC-seq pipeline variant of the EM algorithm to esti-
mate average

expectation_maximization(values, p_e, p_c=0.1,
threshold=0.01, max_iters=300)

Run EM algorithm to estimate average conversion rate
in labeled RNA.

estimate_p_c(df_aggregates, p_e, p_c_path,
group_by=None, threshold=1000, n_threads=8,
nasc=False)

Estimate the average conversion rate in labeled RNA.

dynast.estimation.p_c.read_p_c(p_c_path, group_by=None)
Read p_c CSV as a dictionary, with group_by columns as keys.

Parameters

• p_c_path (str) – path to CSV containing p_c values

• group_by (list, optional) – columns to group by, defaults to None

Returns dictionary with group_by columns as keys (tuple if multiple)

Return type dictionary

dynast.estimation.p_c.binomial_pmf(k, n, p)
Numbaized binomial PMF function for faster calculation.

Parameters

• k (int) – number of successes

4.1. Subpackages 27

dynast, Release 0.2.0

• n (int) – number of trials

• p (float) – probability of success

Returns probability of observing k successes in n trials with probability of success p

Return type float

dynast.estimation.p_c.expectation_maximization_nasc(values, p_e, threshold=0.01)
NASC-seq pipeline variant of the EM algorithm to estimate average conversion rate in labeled RNA.

Parameters

• values (numpy.ndarray) – array of three columns encoding a sparse array in (row, column,
value) format, zero-indexed, where

row: number of conversions column: nucleotide content value: number of reads

• p_e (float) – background mutation rate of unlabeled RNA

• threshold (float, optional) – filter threshold, defaults to 0.01

Returns estimated conversion rate

Return type float

dynast.estimation.p_c.expectation_maximization(values, p_e, p_c=0.1, threshold=0.01, max_iters=300)
Run EM algorithm to estimate average conversion rate in labeled RNA.

This function runs the following two steps. 1) Constructs a sparse matrix representation of values and filters out
certain

indices that are expected to contain more than threshold proportion of unlabeled reads.

2) Runs an EM algorithm that iteratively updates the filtered out data and stimation.

See https://doi.org/10.1093/bioinformatics/bty256.

Parameters

• values (numpy.ndarray) – array of three columns encoding a sparse array in (row, column,
value) format, zero-indexed, where

row: number of conversions column: nucleotide content value: number of reads

• p_e (float) – background mutation rate of unlabeled RNA

• p_c (float, optional) – initial p_c value, defaults to 0.1

• threshold (float, optional) – filter threshold, defaults to 0.01

• max_iters (int, optional) – maximum number of EM iterations, defaults to 300

Returns estimated conversion rate

Return type float

dynast.estimation.p_c.estimate_p_c(df_aggregates, p_e, p_c_path, group_by=None, threshold=1000,
n_threads=8, nasc=False)

Estimate the average conversion rate in labeled RNA.

Parameters

• df_aggregates (pandas.DataFrame) – Pandas dataframe containing aggregate values

• p_e (float) – background mutation rate of unlabeled RNA

28 Chapter 4. dynast

https://doi.org/10.1093/bioinformatics/bty256

dynast, Release 0.2.0

• p_c_path (str) – path to output CSV containing p_c estimates

• group_by (list, optional) – columns to group by, defaults to None

• threshold (int, optional) – read count threshold, defaults to 1000

• n_threads (int, optional) – number of threads, defaults to 8

• nasc (bool, optional) – flag to indicate whether to use NASC-seq pipeline variant of the
EM algorithm, defaults to False

Returns path to output CSV containing p_c estimates

Return type str

dynast.estimation.p_e

Module Contents

Functions

read_p_e(p_e_path, group_by=None) Read p_e CSV as a dictionary, with group_by columns
as keys.

estimate_p_e_control(df_counts, p_e_path, con-
versions=frozenset([('TC',)]))

Estimate background mutation rate of unlabeled RNA
for a control sample

estimate_p_e(df_counts, p_e_path, conver-
sions=frozenset([('TC',)]), group_by=None)

Estimate background mutation rate of unabeled RNA by
calculating the

estimate_p_e_nasc(df_rates, p_e_path,
group_by=None)

Estimate background mutation rate of unabeled RNA by
calculating the

dynast.estimation.p_e.read_p_e(p_e_path, group_by=None)
Read p_e CSV as a dictionary, with group_by columns as keys.

Parameters

• p_e_path (str) – path to CSV containing p_e values

• group_by (list, optional) – columns to group by, defaults to None

Returns dictionary with group_by columns as keys (tuple if multiple)

Return type dictionary

dynast.estimation.p_e.estimate_p_e_control(df_counts, p_e_path, conversions=frozenset([('TC',)]))
Estimate background mutation rate of unlabeled RNA for a control sample by simply calculating the average
mutation rate.

Parameters

• df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conver-
sion and nucleotide content of each read

• p_e_path (str) – path to output CSV containing p_e estimates

• conversions (list, optional) – conversion(s) in question, defaults to
frozenset([(‘TC’,)])

Returns path to output CSV containing p_e estimates

Return type str

4.1. Subpackages 29

dynast, Release 0.2.0

dynast.estimation.p_e.estimate_p_e(df_counts, p_e_path, conversions=frozenset([('TC',)]),
group_by=None)

Estimate background mutation rate of unabeled RNA by calculating the average mutation rate of all three nu-
cleotides other than conversion[0].

Parameters

• df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conver-
sion and nucleotide content of each read

• p_e_path (str) – path to output CSV containing p_e estimates

• conversions (list, optional) – conversion(s) in question, defaults to
frozenset([(‘TC’,)])

• group_by (list, optional) – columns to group by, defaults to None

Returns path to output CSV containing p_e estimates

Return type str

dynast.estimation.p_e.estimate_p_e_nasc(df_rates, p_e_path, group_by=None)
Estimate background mutation rate of unabeled RNA by calculating the average CT and GA mutation rates. This
function imitates the procedure implemented in the NASC-seq pipeline (DOI: 10.1038/s41467-019-11028-9).

Parameters

• df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conver-
sion and nucleotide content of each read

• p_e_path (str) – path to output CSV containing p_e estimates

• group_by (list, optional) – columns to group by, defaults to None

Returns path to output CSV containing p_e estimates

Return type str

dynast.estimation.pi

Module Contents

Functions

read_pi(pi_path, group_by=None) Read pi CSV as a dictionary.
initializer(model) Multiprocessing initializer.
beta_mean(alpha, beta) Calculate the mean of a beta distribution.
beta_mode(alpha, beta) Calculate the mode of a beta distribution.
guess_beta_parameters(guess, strength=5) Given a guess of the mean of a beta distribution, calcu-

late beta
fit_stan_mcmc(values, p_e, p_c, guess=0.5,
model=None, n_chains=1, n_warmup=1000,
n_iters=1000, seed=None)

Run MCMC to estimate the fraction of labeled RNA.

estimate_pi(df_aggregates, p_e, p_c, pi_path,
group_by=None, p_group_by=None, n_threads=8,
threshold=16, seed=None, nasc=False, model=None)

Estimate the fraction of labeled RNA.

30 Chapter 4. dynast

dynast, Release 0.2.0

Attributes

_model

dynast.estimation.pi.read_pi(pi_path, group_by=None)
Read pi CSV as a dictionary.

Parameters

• pi_path (str) – path to CSV containing pi values

• group_by (list, optional) – columns that were used to group estimation, defaults to
None

Returns dictionary with barcodes and genes as keys

Return type dictionary

dynast.estimation.pi._model

dynast.estimation.pi.initializer(model)
Multiprocessing initializer. https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.
ThreadPoolExecutor

This initializer performs a one-time expensive initialization for each process.

dynast.estimation.pi.beta_mean(alpha, beta)
Calculate the mean of a beta distribution. https://en.wikipedia.org/wiki/Beta_distribution

Parameters

• alpha (float) – first parameter of the beta distribution

• beta (float) – second parameter of the beta distribution

Returns mean of the beta distribution

Return type float

dynast.estimation.pi.beta_mode(alpha, beta)
Calculate the mode of a beta distribution. https://en.wikipedia.org/wiki/Beta_distribution

When the distribution is bimodal (alpha, beta < 1), this function returns nan.

Parameters

• alpha (float) – first parameter of the beta distribution

• beta (float) – second parameter of the beta distribution

Returns mode of the beta distribution

Return type float

dynast.estimation.pi.guess_beta_parameters(guess, strength=5)
Given a guess of the mean of a beta distribution, calculate beta distribution parameters such that the distribution
is skewed by some strength toward the guess.

Parameters

• guess (float) – guess of the mean of the beta distribution

• strength (int) – strength of the skew, defaults to 5

4.1. Subpackages 31

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://en.wikipedia.org/wiki/Beta_distribution
https://en.wikipedia.org/wiki/Beta_distribution

dynast, Release 0.2.0

Returns beta distribution parameters (alpha, beta)

Return type (float, float)

dynast.estimation.pi.fit_stan_mcmc(values, p_e, p_c, guess=0.5, model=None, n_chains=1,
n_warmup=1000, n_iters=1000, seed=None)

Run MCMC to estimate the fraction of labeled RNA.

Parameters

• values (numpy.ndarray) – array of three columns encoding a sparse array in (row, column,
value) format, zero-indexed, where

row: number of conversions column: nucleotide content value: number of reads

• p_e (float) – average mutation rate in unlabeled RNA

• p_c (float) – average mutation rate in labeled RNA

• guess (float, optional) – guess for the fraction of labeled RNA, defaults to 0.5

• model (pystan.StanModel, optional) – pyStan model to run MCMC with, defaults to
None if not provided, will try to use the _model global variable

• n_chains (int, optional) – number of MCMC chains, defaults to 1

• n_warmup (int, optional) – number of warmup iterations, defaults to 1000

• n_iters (int, optional) – number of MCMC iterations, excluding any warmups, de-
faults to 1000

• seed (int, optional) – random seed used for MCMC, defaults to None

Returns (guess, alpha, beta, pi)

Return type (float, float, float, float)

dynast.estimation.pi.estimate_pi(df_aggregates, p_e, p_c, pi_path, group_by=None, p_group_by=None,
n_threads=8, threshold=16, seed=None, nasc=False, model=None)

Estimate the fraction of labeled RNA.

Parameters

• df_aggregates (pandas.DataFrame) – Pandas dataframe containing aggregate values

• p_e (float) – average mutation rate in unlabeled RNA

• p_c (float) – average mutation rate in labeled RNA

• pi_path (str) – path to write pi estimates

• group_by (list, optional) – columns that were used to group cells, defaults to None

• p_group_by (list, optional) – columns that p_e/p_c estimation was grouped by, de-
faults to None

• n_threads (int, optional) – number of threads, defaults to 8

• threshold (int, optional) – any conversion-content pairs with fewer than this many
reads will not be processed, defaults to 16

• seed (int, optional) – random seed, defaults to None

• nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline. Specifi-
cally, the mode of the estimated Beta distribution is used as pi, defaults to False

32 Chapter 4. dynast

dynast, Release 0.2.0

• model (pystan.StanModel, optional) – pyStan model to run MCMC with, defaults to
None if not provided, will try to compile the module manually

Returns path to pi output

Return type str

Package Contents

Functions

estimate_p_c(df_aggregates, p_e, p_c_path,
group_by=None, threshold=1000, n_threads=8,
nasc=False)

Estimate the average conversion rate in labeled RNA.

read_p_c(p_c_path, group_by=None) Read p_c CSV as a dictionary, with group_by columns
as keys.

estimate_p_e(df_counts, p_e_path, conver-
sions=frozenset([('TC',)]), group_by=None)

Estimate background mutation rate of unabeled RNA by
calculating the

estimate_p_e_control(df_counts, p_e_path, con-
versions=frozenset([('TC',)]))

Estimate background mutation rate of unlabeled RNA
for a control sample

estimate_p_e_nasc(df_rates, p_e_path,
group_by=None)

Estimate background mutation rate of unabeled RNA by
calculating the

read_p_e(p_e_path, group_by=None) Read p_e CSV as a dictionary, with group_by columns
as keys.

estimate_pi(df_aggregates, p_e, p_c, pi_path,
group_by=None, p_group_by=None, n_threads=8,
threshold=16, seed=None, nasc=False, model=None)

Estimate the fraction of labeled RNA.

read_pi(pi_path, group_by=None) Read pi CSV as a dictionary.

dynast.estimation.estimate_p_c(df_aggregates, p_e, p_c_path, group_by=None, threshold=1000,
n_threads=8, nasc=False)

Estimate the average conversion rate in labeled RNA.

Parameters

• df_aggregates (pandas.DataFrame) – Pandas dataframe containing aggregate values

• p_e (float) – background mutation rate of unlabeled RNA

• p_c_path (str) – path to output CSV containing p_c estimates

• group_by (list, optional) – columns to group by, defaults to None

• threshold (int, optional) – read count threshold, defaults to 1000

• n_threads (int, optional) – number of threads, defaults to 8

• nasc (bool, optional) – flag to indicate whether to use NASC-seq pipeline variant of the
EM algorithm, defaults to False

Returns path to output CSV containing p_c estimates

Return type str

dynast.estimation.read_p_c(p_c_path, group_by=None)
Read p_c CSV as a dictionary, with group_by columns as keys.

Parameters

4.1. Subpackages 33

dynast, Release 0.2.0

• p_c_path (str) – path to CSV containing p_c values

• group_by (list, optional) – columns to group by, defaults to None

Returns dictionary with group_by columns as keys (tuple if multiple)

Return type dictionary

dynast.estimation.estimate_p_e(df_counts, p_e_path, conversions=frozenset([('TC',)]), group_by=None)
Estimate background mutation rate of unabeled RNA by calculating the average mutation rate of all three nu-
cleotides other than conversion[0].

Parameters

• df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conver-
sion and nucleotide content of each read

• p_e_path (str) – path to output CSV containing p_e estimates

• conversions (list, optional) – conversion(s) in question, defaults to
frozenset([(‘TC’,)])

• group_by (list, optional) – columns to group by, defaults to None

Returns path to output CSV containing p_e estimates

Return type str

dynast.estimation.estimate_p_e_control(df_counts, p_e_path, conversions=frozenset([('TC',)]))
Estimate background mutation rate of unlabeled RNA for a control sample by simply calculating the average
mutation rate.

Parameters

• df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conver-
sion and nucleotide content of each read

• p_e_path (str) – path to output CSV containing p_e estimates

• conversions (list, optional) – conversion(s) in question, defaults to
frozenset([(‘TC’,)])

Returns path to output CSV containing p_e estimates

Return type str

dynast.estimation.estimate_p_e_nasc(df_rates, p_e_path, group_by=None)
Estimate background mutation rate of unabeled RNA by calculating the average CT and GA mutation rates. This
function imitates the procedure implemented in the NASC-seq pipeline (DOI: 10.1038/s41467-019-11028-9).

Parameters

• df_counts (pandas.DataFrame) – Pandas dataframe containing number of each conver-
sion and nucleotide content of each read

• p_e_path (str) – path to output CSV containing p_e estimates

• group_by (list, optional) – columns to group by, defaults to None

Returns path to output CSV containing p_e estimates

Return type str

34 Chapter 4. dynast

dynast, Release 0.2.0

dynast.estimation.read_p_e(p_e_path, group_by=None)
Read p_e CSV as a dictionary, with group_by columns as keys.

Parameters

• p_e_path (str) – path to CSV containing p_e values

• group_by (list, optional) – columns to group by, defaults to None

Returns dictionary with group_by columns as keys (tuple if multiple)

Return type dictionary

dynast.estimation.estimate_pi(df_aggregates, p_e, p_c, pi_path, group_by=None, p_group_by=None,
n_threads=8, threshold=16, seed=None, nasc=False, model=None)

Estimate the fraction of labeled RNA.

Parameters

• df_aggregates (pandas.DataFrame) – Pandas dataframe containing aggregate values

• p_e (float) – average mutation rate in unlabeled RNA

• p_c (float) – average mutation rate in labeled RNA

• pi_path (str) – path to write pi estimates

• group_by (list, optional) – columns that were used to group cells, defaults to None

• p_group_by (list, optional) – columns that p_e/p_c estimation was grouped by, de-
faults to None

• n_threads (int, optional) – number of threads, defaults to 8

• threshold (int, optional) – any conversion-content pairs with fewer than this many
reads will not be processed, defaults to 16

• seed (int, optional) – random seed, defaults to None

• nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline. Specifi-
cally, the mode of the estimated Beta distribution is used as pi, defaults to False

• model (pystan.StanModel, optional) – pyStan model to run MCMC with, defaults to
None if not provided, will try to compile the module manually

Returns path to pi output

Return type str

dynast.estimation.read_pi(pi_path, group_by=None)
Read pi CSV as a dictionary.

Parameters

• pi_path (str) – path to CSV containing pi values

• group_by (list, optional) – columns that were used to group estimation, defaults to
None

Returns dictionary with barcodes and genes as keys

Return type dictionary

4.1. Subpackages 35

dynast, Release 0.2.0

4.1.3 dynast.preprocessing

Submodules

dynast.preprocessing.aggregation

Module Contents

Functions

read_rates(rates_path) Read mutation rates CSV as a pandas dataframe.
read_aggregates(aggregates_path) Read aggregates CSV as a pandas dataframe.
merge_aggregates(*dfs) Merge multiple aggregate dataframes into one.
calculate_mutation_rates(df_counts, rates_path,
group_by=None)

Calculate mutation rate for each pair of bases.

aggregate_counts(df_counts, aggregates_path, con-
versions=frozenset([('TC',)]))

Aggregate conversion counts for each pair of bases.

dynast.preprocessing.aggregation.read_rates(rates_path)
Read mutation rates CSV as a pandas dataframe.

Parameters rates_path (str) – path to rates CSV

Returns rates dataframe

Return type pandas.DataFrame

dynast.preprocessing.aggregation.read_aggregates(aggregates_path)
Read aggregates CSV as a pandas dataframe.

Parameters aggregates_path (str) – path to aggregates CSV

Returns aggregates dataframe

Return type pandas.DataFrame

dynast.preprocessing.aggregation.merge_aggregates(*dfs)
Merge multiple aggregate dataframes into one.

Parameters *dfs – dataframes to merge

Returns merged dataframe

Return type pandas.DataFrame

dynast.preprocessing.aggregation.calculate_mutation_rates(df_counts, rates_path, group_by=None)
Calculate mutation rate for each pair of bases.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand
bases

• rates_path (str) – path to write rates CSV

• group_by (list) – column(s) to group calculations by, defaults to None, which combines
all rows

Returns path to rates CSV

36 Chapter 4. dynast

dynast, Release 0.2.0

Return type str

dynast.preprocessing.aggregation.aggregate_counts(df_counts, aggregates_path,
conversions=frozenset([('TC',)]))

Aggregate conversion counts for each pair of bases.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand
bases

• aggregates_path (str) – path to write aggregate CSV

• conversions (list, optional) – conversion(s) in question, defaults to
frozenset([(‘TC’,)])

Returns path to aggregate CSV that was written

Return type str

dynast.preprocessing.bam

Module Contents

4.1. Subpackages 37

dynast, Release 0.2.0

Functions

read_alignments(alignments_path, *args, **kwargs) Read alignments CSV as a pandas DataFrame.
read_conversions(conversions_path, *args,
**kwargs)

Read conversions CSV as a pandas DataFrame.

select_alignments(df_alignments) Select alignments among duplicates. This function per-
forms preliminary

parse_read_contig(counter, lock, bam_path,
contig, gene_infos=None, transcript_infos=None,
strand='forward', umi_tag=None, barcode_tag=None,
gene_tag='GX', barcodes=None, temp_dir=None,
update_every=2000, nasc=False, velocity=True,
strict_exon_overlap=False)

Parse all reads mapped to a contig, outputing conversion

get_tags_from_bam(bam_path, n_reads=100000,
n_threads=8)

Utility function to retrieve all read tags present in a
BAM.

check_bam_tags_exist(bam_path, tags,
n_reads=100000, n_threads=8)

Utility function to check if BAM tags exists in a BAM
within the first

check_bam_is_paired(bam_path, n_reads=100000,
n_threads=8)

Utility function to check if BAM has paired reads.

check_bam_contains_secondary(bam_path,
n_reads=100000, n_threads=8)
check_bam_contains_unmapped(bam_path)

check_bam_contains_duplicate(bam_path,
n_reads=100000, n_threads=8)
sort_and_index_bam(bam_path, out_path,
n_threads=8, temp_dir=None)

Sort and index BAM.

split_bam(bam_path, n, n_threads=8,
temp_dir=None)

Split BAM into n parts.

parse_all_reads(bam_path, conversions_path,
alignments_path, index_path, gene_infos, tran-
script_infos, strand='forward', umi_tag=None, bar-
code_tag=None, gene_tag='GX', barcodes=None,
n_threads=8, temp_dir=None, nasc=False, con-
trol=False, velocity=True, strict_exon_overlap=False,
return_splits=False)

Parse all reads in a BAM and extract conversion, content
and alignment

Attributes

CONVERSION_CSV_COLUMNS

ALIGNMENT_COLUMNS

dynast.preprocessing.bam.CONVERSION_CSV_COLUMNS = ['read_id', 'index', 'contig',
'genome_i', 'conversion', 'quality']

dynast.preprocessing.bam.ALIGNMENT_COLUMNS = ['read_id', 'index', 'barcode', 'umi', 'GX',
'A', 'C', 'G', 'T', 'velocity', 'transcriptome', 'score']

38 Chapter 4. dynast

dynast, Release 0.2.0

dynast.preprocessing.bam.read_alignments(alignments_path, *args, **kwargs)
Read alignments CSV as a pandas DataFrame.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

Parameters alignments_path (str) – path to alignments CSV

Returns conversions dataframe

Return type pandas.DataFrame

dynast.preprocessing.bam.read_conversions(conversions_path, *args, **kwargs)
Read conversions CSV as a pandas DataFrame.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

Parameters conversions_path (str) – path to conversions CSV

Returns conversions dataframe

Return type pandas.DataFrame

dynast.preprocessing.bam.select_alignments(df_alignments)
Select alignments among duplicates. This function performs preliminary deduplication and returns a list of tuples
(read_id, alignment index) to use for coverage calculation and SNP detection.

Parameters df_alignments (pandas.DataFrame) – alignments dataframe

Returns set of (read_id, alignment index) that were selected

Return type set

dynast.preprocessing.bam.parse_read_contig(counter, lock, bam_path, contig, gene_infos=None,
transcript_infos=None, strand='forward', umi_tag=None,
barcode_tag=None, gene_tag='GX', barcodes=None,
temp_dir=None, update_every=2000, nasc=False,
velocity=True, strict_exon_overlap=False)

Parse all reads mapped to a contig, outputing conversion information as temporary CSVs. This function is
designed to be called as a separate process.

Parameters

• counter (multiprocessing.Value) – counter that keeps track of how many reads have
been processed

• lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do
not modify it at the same time

• bam_path (str) – path to alignment BAM file

• contig (str) – only reads that map to this contig will be processed

• gene_infos (dictionary) – dictionary containing gene information, as returned by pre-
processing.gtf.parse_gtf, required if velocity=True, defaults to None

• transcript_infos (dictionary) – dictionary containing transcript information, as re-
turned by preprocessing.gtf.parse_gtf, required if velocity=True, defaults to None

• strand (str, optional) – strandedness of the sequencing protocol, defaults to forward,
may be one of the following: forward, reverse, None (unstranded)

• umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in
the umi column, defaults to None

4.1. Subpackages 39

dynast, Release 0.2.0

• barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

• gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• temp_dir (str, optional) – path to temporary directory, defaults to None

• update_every (int, optional) – update the counter every this many reads, defaults to
5000

• nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline, defaults
to False

• velocity (bool, optional) – whether or not to assign a velocity type to each read, de-
faults to True

• strict_exon_overlap (bool, optional) – Whether to use a stricter algorithm to assin
reads as spliced, defaults to False

Returns (path to conversions, path to conversions index, path to alignments)

Return type (str, str, str)

dynast.preprocessing.bam.get_tags_from_bam(bam_path, n_reads=100000, n_threads=8)
Utility function to retrieve all read tags present in a BAM.

Parameters

• bam_path (str) – path to BAM

• n_reads (int, optional) – number of reads to consider, defaults to 100000

• n_threads (int, optional) – number of threads, defaults to 8

Returns set of all tags found

Return type set

dynast.preprocessing.bam.check_bam_tags_exist(bam_path, tags, n_reads=100000, n_threads=8)
Utility function to check if BAM tags exists in a BAM within the first n_reads reads.

Parameters

• bam_path (str) – path to BAM

• tags (list) – tags to check for

• n_reads (int, optional) – number of reads to consider, defaults to 100000

• n_threads (int, optional) – number of threads, defaults to 8

Returns (whether all tags were found, list of not found tags)

Return type (bool, list)

dynast.preprocessing.bam.check_bam_is_paired(bam_path, n_reads=100000, n_threads=8)
Utility function to check if BAM has paired reads.

Parameters

• bam_path (str) – path to BAM

• n_reads (int, optional) – number of reads to consider, defaults to 100000

• n_threads (int, optional) – number of threads, defaults to 8

40 Chapter 4. dynast

dynast, Release 0.2.0

Returns whether paired reads were detected

Return type bool

dynast.preprocessing.bam.check_bam_contains_secondary(bam_path, n_reads=100000, n_threads=8)

dynast.preprocessing.bam.check_bam_contains_unmapped(bam_path)

dynast.preprocessing.bam.check_bam_contains_duplicate(bam_path, n_reads=100000, n_threads=8)

dynast.preprocessing.bam.sort_and_index_bam(bam_path, out_path, n_threads=8, temp_dir=None)
Sort and index BAM.

If the BAM is already sorted, the sorting step is skipped.

Parameters

• bam_path (str) – path to alignment BAM file to sort

• out_path (str) – path to output sorted BAM

• n_threads (int, optional) – number of threads, defaults to 8

• temp_dir (str, optional) – path to temporary directory, defaults to None

Returns path to sorted and indexed BAM

Return type str

dynast.preprocessing.bam.split_bam(bam_path, n, n_threads=8, temp_dir=None)
Split BAM into n parts.

Parameters

• bam_path (str) – path to alignment BAM file

• n (int) – number of splits

• n_threads (int, optional) – number of threads, defaults to 8

• temp_dir (str, optional) – path to temporary directory, defaults to None

Returns List of tuples containing (split BAM path, number of reads)

Return type list

dynast.preprocessing.bam.parse_all_reads(bam_path, conversions_path, alignments_path, index_path,
gene_infos, transcript_infos, strand='forward', umi_tag=None,
barcode_tag=None, gene_tag='GX', barcodes=None,
n_threads=8, temp_dir=None, nasc=False, control=False,
velocity=True, strict_exon_overlap=False,
return_splits=False)

Parse all reads in a BAM and extract conversion, content and alignment information as CSVs.

Parameters

• bam_path (str) – path to alignment BAM file

• conversions_path (str) – path to output information about reads that have conversions

• alignments_path (str) – path to alignments information about reads

• index_path (str) – path to conversions index

• no_index_path (str) – path to no conversions index

4.1. Subpackages 41

dynast, Release 0.2.0

• gene_infos (dictionary) – dictionary containing gene information, as returned by
ngs.gtf.genes_and_transcripts_from_gtf

• transcript_infos (dictionary) – dictionary containing transcript information, as re-
turned by ngs.gtf.genes_and_transcripts_from_gtf

• strand (str, optional) – strandedness of the sequencing protocol, defaults to forward,
may be one of the following: forward, reverse, unstranded

• umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in
the umi column, defaults to None

• barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

• gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• n_threads (int, optional) – number of threads, defaults to 8

• temp_dir (str, optional) – path to temporary directory, defaults to None

• nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline, defaults
to False

• velocity (bool, optional) – whether or not to assign a velocity type to each read, de-
faults to True

• strict_exon_overlap (bool, optional) – Whether to use a stricter algorithm to assin
reads as spliced, defaults to False

• return_splits (bool, optional) – return BAM splits for later reuse, defaults to True

Returns (path to conversions, path to alignments, path to conversions index) If return_splits is True,
then there is an additional return value, which is a list of tuples containing split BAM paths and
number of reads in each BAM.

Return type (str, str, str) or (str, str, str, list)

dynast.preprocessing.consensus

Module Contents

Functions

call_consensus_from_reads(reads, header, qual-
ity=27, tags=None)

Call a single consensus alignment given a list of aligned
reads.

call_consensus_from_reads_process(reads,
header, tags, strand=None, quality=27)
consensus_worker(args_q, results_q, *args,
**kwargs)
call_consensus(bam_path, out_path, gene_infos,
strand='forward', umi_tag=None, barcode_tag=None,
gene_tag='GX', barcodes=None, quality=27,
add_RS_RI=False, temp_dir=None, n_threads=8)

42 Chapter 4. dynast

dynast, Release 0.2.0

Attributes

BASES

BASE_IDX

dynast.preprocessing.consensus.BASES = ['A', 'C', 'G', 'T']

dynast.preprocessing.consensus.BASE_IDX

dynast.preprocessing.consensus.call_consensus_from_reads(reads, header, quality=27, tags=None)
Call a single consensus alignment given a list of aligned reads.

Reads must map to the same contig. Results are undefined otherwise. Additionally, consensus bases are called
only for positions that match to the reference (i.e. no insertions allowed).

This function only sets the minimal amount of attributes such that the alignment is valid. These include: * read
name – SHA256 hash of the provided read names * read sequence and qualities * reference name and ID *
reference start * mapping quality (MAPQ) * cigarstring * MD tag * NM tag * Not unmapped, paired, duplicate,
qc fail, secondary, nor supplementary

The caller is expected to further populate the alignment with additional tags, flags, and name.

Parameters

• reads (list) – List of reads to call a consensus sequence from

• header (pysam.AlignmentHeader) – header to use when creating the new pysam align-
ment

• quality (int, optional) – quality threshold, defaults to 27

• tags (dict, optional) – additional tags to set, defaults to None

Returns (New pysam alignment of the consensus sequence)

Return type pysam.AlignedSegment

dynast.preprocessing.consensus.call_consensus_from_reads_process(reads, header, tags,
strand=None, quality=27)

dynast.preprocessing.consensus.consensus_worker(args_q, results_q, *args, **kwargs)

dynast.preprocessing.consensus.call_consensus(bam_path, out_path, gene_infos, strand='forward',
umi_tag=None, barcode_tag=None, gene_tag='GX',
barcodes=None, quality=27, add_RS_RI=False,
temp_dir=None, n_threads=8)

4.1. Subpackages 43

dynast, Release 0.2.0

dynast.preprocessing.conversion

Module Contents

Functions

read_counts(counts_path, *args, **kwargs) Read counts CSV as a pandas dataframe.
complement_counts(df_counts, gene_infos) Complement the counts in the counts dataframe accord-

ing to gene strand.
drop_multimappers(df_counts, conversions=None) Drop multimappings that have the same read ID where
deduplicate_counts(df_counts, conversions=None,
use_conversions=True)

Deduplicate counts based on barcode, UMI, and gene.

drop_multimappers_part(counter, lock, split_path,
out_path)
deduplicate_counts_part(counter, lock, split_path,
out_path, conversions=None, use_conversions=True)
split_counts_by_velocity(df_counts) Split the given counts dataframe by the velocity column.
count_no_conversions(alignments_path, counter,
lock, index, barcodes=None, temp_dir=None, up-
date_every=10000)

Count reads that have no conversion.

count_conversions_part(conversions_path, align-
ments_path, counter, lock, index, barcodes=None,
snps=None, quality=27, temp_dir=None, up-
date_every=10000)

Count the number of conversions of each read per bar-
code and gene, along with

count_conversions(conversions_path, align-
ments_path, index_path, counts_path, gene_infos,
barcodes=None, snps=None, quality=27, con-
versions=None, dedup_use_conversions=True,
n_threads=8, temp_dir=None)

Count the number of conversions of each read per bar-
code and gene, along with

Attributes

CONVERSIONS_PARSER

ALIGNMENTS_PARSER

CONVERSION_IDX

BASE_IDX

CONVERSION_COMPLEMENT

CONVERSION_COLUMNS

BASE_COLUMNS

COLUMNS

CSV_COLUMNS

44 Chapter 4. dynast

dynast, Release 0.2.0

dynast.preprocessing.conversion.CONVERSIONS_PARSER

dynast.preprocessing.conversion.ALIGNMENTS_PARSER

dynast.preprocessing.conversion.CONVERSION_IDX

dynast.preprocessing.conversion.BASE_IDX

dynast.preprocessing.conversion.CONVERSION_COMPLEMENT

dynast.preprocessing.conversion.CONVERSION_COLUMNS

dynast.preprocessing.conversion.BASE_COLUMNS

dynast.preprocessing.conversion.COLUMNS

dynast.preprocessing.conversion.CSV_COLUMNS

dynast.preprocessing.conversion.read_counts(counts_path, *args, **kwargs)
Read counts CSV as a pandas dataframe.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

Parameters counts_path (str) – path to CSV

Returns counts dataframe

Return type pandas.DataFrame

dynast.preprocessing.conversion.complement_counts(df_counts, gene_infos)
Complement the counts in the counts dataframe according to gene strand.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe

• gene_infos (dictionary) – dictionary containing gene information, as returned by pre-
processing.gtf.parse_gtf

Returns counts dataframe with counts complemented for reads mapping to genes on the reverse
strand

Return type pandas.DataFrame

dynast.preprocessing.conversion.drop_multimappers(df_counts, conversions=None)
Drop multimappings that have the same read ID where * some map to the transcriptome while some do not –
drop non-transcriptome alignments * none map to the transcriptome AND aligned to multiple genes – drop all *
none map to the transcriptome AND assigned multiple velocity types – set to ambiguous

TODO: This function can probably be removed because BAM parsing only considers primary alignments now.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe

• conversions (list, optional) – conversions to prioritize, defaults to None

Returns counts dataframe with multimappers appropriately filtered

Return type pandas.DataFrame

4.1. Subpackages 45

dynast, Release 0.2.0

dynast.preprocessing.conversion.deduplicate_counts(df_counts, conversions=None,
use_conversions=True)

Deduplicate counts based on barcode, UMI, and gene.

The order of priority is the following. 1. If use_conversions=True, reads that have at least one such conversion
2. Reads that align to the transcriptome (exon only) 3. Reads that have highest alignment score 4. If conversions
is provided, reads that have a larger sum of such conversions

If conversions is not provided, reads that have larger sum of all conversions

Parameters

• df_counts (pandas.DataFrame) – counts dataframe

• conversions (list, optional) – conversions to prioritize, defaults to None

• use_conversions (bool, optional) – prioritize reads that have conversions first, de-
faults to True

Returns deduplicated counts dataframe

Return type pandas.DataFrame

dynast.preprocessing.conversion.drop_multimappers_part(counter, lock, split_path, out_path)

dynast.preprocessing.conversion.deduplicate_counts_part(counter, lock, split_path, out_path,
conversions=None, use_conversions=True)

dynast.preprocessing.conversion.split_counts_by_velocity(df_counts)
Split the given counts dataframe by the velocity column.

Parameters df_counts (pandas.DataFrame) – counts dataframe

Returns dictionary containing velocity column values as keys and the subset dataframe as values

Return type dictionary

dynast.preprocessing.conversion.count_no_conversions(alignments_path, counter, lock, index,
barcodes=None, temp_dir=None,
update_every=10000)

Count reads that have no conversion.

Parameters

• alignments_path (str) – alignments CSV path

• counter (multiprocessing.Value) – counter that keeps track of how many reads have
been processed

• lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do
not modify it at the same time

• index (list) – index for conversions CSV

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• temp_dir (str, optional) – path to temporary directory, defaults to None

• update_every (int, optional) – update the counter every this many reads, defaults to
5000

Returns path to temporary counts CSV

46 Chapter 4. dynast

dynast, Release 0.2.0

Return type str

dynast.preprocessing.conversion.count_conversions_part(conversions_path, alignments_path, counter,
lock, index, barcodes=None, snps=None,
quality=27, temp_dir=None,
update_every=10000)

Count the number of conversions of each read per barcode and gene, along with the total nucleotide content of
the region each read mapped to, also per barcode and gene. This function is used exclusively for multiprocessing.

Parameters

• conversions_path (str) – path to conversions CSV

• alignments_path (str) – path to alignments information about reads

• counter (multiprocessing.Value) – counter that keeps track of how many reads have
been processed

• lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do
not modify it at the same time

• index (list) – list of (file position, number of lines) tuples to process

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• snps (dictionary, optional) – dictionary of contig as keys and list of genomic positions
as values that indicate SNP locations, defaults to None

• quality (int, optional) – only count conversions with PHRED quality greater than this
value, defaults to 27

• temp_dir (str, optional) – path to temporary directory, defaults to None

• update_every (int, optional) – update the counter every this many reads, defaults to
10000

Returns path to temporary counts CSV

Return type tuple

dynast.preprocessing.conversion.count_conversions(conversions_path, alignments_path, index_path,
counts_path, gene_infos, barcodes=None,
snps=None, quality=27, conversions=None,
dedup_use_conversions=True, n_threads=8,
temp_dir=None)

Count the number of conversions of each read per barcode and gene, along with the total nucleotide content of
the region each read mapped to, also per barcode. When a duplicate UMI for a barcode is observed, the read
with the greatest number of conversions is selected.

Parameters

• conversions_path (str) – path to conversions CSV

• alignments_path (str) – path to alignments information about reads

• index_path (str) – path to conversions index

• counts_path – path to write counts CSV

• counts_path – str

• gene_infos (dictionary) – dictionary containing gene information, as returned by
ngs.gtf.genes_and_transcripts_from_gtf, defaults to None

4.1. Subpackages 47

dynast, Release 0.2.0

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• snps (dictionary, optional) – dictionary of contig as keys and list of genomic positions
as values that indicate SNP locations, defaults to None

• conversions (list, optional) – conversions to prioritize when deduplicating only ap-
plicable for UMI technologies, defaults to None

• dedup_use_conversions (bool, optional) – prioritize reads that have at least one con-
version when deduplicating, defaults to True

• quality (int, optional) – only count conversions with PHRED quality greater than this
value, defaults to 27

• n_threads (int, optional) – number of threads, defaults to 8

• temp_dir (str, optional) – path to temporary directory, defaults to None

Returns path to counts CSV

Return type str

dynast.preprocessing.coverage

Module Contents

Functions

read_coverage(coverage_path) Read coverage CSV as a dictionary.
calculate_coverage_contig(counter, lock,
bam_path, contig, indices, alignments=None,
umi_tag=None, barcode_tag=None, gene_tag='GX',
barcodes=None, temp_dir=None, update_every=50000,
velocity=True)

Calculate converage for a specific contig. This function
is designed to

calculate_coverage(bam_path, conversions,
coverage_path, alignments=None, umi_tag=None,
barcode_tag=None, gene_tag='GX', barcodes=None,
temp_dir=None, velocity=True)

Calculate coverage of each genomic position per bar-
code.

Attributes

COVERAGE_PARSER

dynast.preprocessing.coverage.COVERAGE_PARSER

dynast.preprocessing.coverage.read_coverage(coverage_path)
Read coverage CSV as a dictionary.

Parameters coverage_path (str) – path to coverage CSV

Returns coverage as a nested dictionary

Return type dict

48 Chapter 4. dynast

dynast, Release 0.2.0

dynast.preprocessing.coverage.calculate_coverage_contig(counter, lock, bam_path, contig, indices,
alignments=None, umi_tag=None,
barcode_tag=None, gene_tag='GX',
barcodes=None, temp_dir=None,
update_every=50000, velocity=True)

Calculate converage for a specific contig. This function is designed to be called as a separate process.

Parameters

• counter (multiprocessing.Value) – counter that keeps track of how many reads have
been processed

• lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do
not modify it at the same time

• bam_path (str) – path to alignment BAM file

• contig (str) – only reads that map to this contig will be processed

• indices (list) – genomic positions to consider

• alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

• umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in
the umi column, defaults to None

• barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

• gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• temp_dir (str, optional) – path to temporary directory, defaults to None

• update_every (int, optional) – update the counter every this many reads, defaults to
30000

• velocity (bool, optional) – whether or not velocities were assigned

Returns coverag

Return type dict

dynast.preprocessing.coverage.calculate_coverage(bam_path, conversions, coverage_path,
alignments=None, umi_tag=None,
barcode_tag=None, gene_tag='GX',
barcodes=None, temp_dir=None, velocity=True)

Calculate coverage of each genomic position per barcode.

Parameters

• bam_path (str) – path to alignment BAM file

• conversions (dictionary) – dictionary of contigs as keys and sets of genomic positions
as values that indicates positions where conversions were observed

• coverage_path (str) – path to write coverage CSV

• alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

4.1. Subpackages 49

dynast, Release 0.2.0

• umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in
the umi column, defaults to None

• barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

• gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• temp_dir (str, optional) – path to temporary directory, defaults to None

• velocity (bool, optional) – whether or not velocities were assigned

Returns coverage CSV path

Return type str

dynast.preprocessing.snp

Module Contents

Functions

read_snps(snps_path) Read SNPs CSV as a dictionary
read_snp_csv(snp_csv) Read a user-provided SNPs CSV
extract_conversions_part(conversions_path,
counter, lock, index, alignments=None, conver-
sions=None, quality=27, update_every=5000)

Extract number of conversions for every genomic posi-
tion.

extract_conversions(conversions_path, in-
dex_path, alignments=None, conversions=None,
quality=27, n_threads=8)

Wrapper around extract_conversions_part that works in
parallel

detect_snps(conversions_path, index_path, coverage,
snps_path, alignments=None, conversions=None, qual-
ity=27, threshold=0.5, min_coverage=1, n_threads=8)

Detect SNPs.

Attributes

SNP_COLUMNS

dynast.preprocessing.snp.SNP_COLUMNS = ['contig', 'genome_i', 'conversion']

dynast.preprocessing.snp.read_snps(snps_path)
Read SNPs CSV as a dictionary

Parameters snps_path (str) – path to SNPs CSV

Returns dictionary of contigs as keys and sets of genomic positions with SNPs as values

Return type dictionary

50 Chapter 4. dynast

dynast, Release 0.2.0

dynast.preprocessing.snp.read_snp_csv(snp_csv)
Read a user-provided SNPs CSV

Parameters snp_csv (str) – path to SNPs CSV

Returns dictionary of contigs as keys and sets of genomic positions with SNPs as values

Return type dictionary

dynast.preprocessing.snp.extract_conversions_part(conversions_path, counter, lock, index,
alignments=None, conversions=None, quality=27,
update_every=5000)

Extract number of conversions for every genomic position.

Parameters

• conversions_path (str) – path to conversions CSV

• counter (multiprocessing.Value) – counter that keeps track of how many reads have
been processed

• lock (multiprocessing.Lock) – semaphore for the counter so that multiple processes do
not modify it at the same time

• index (list) – list of (file position, number of lines) tuples to process

• alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

• conversions (set, optional) – set of conversions to consider

• quality (int, optional) – only count conversions with PHRED quality greater than this
value, defaults to 27

• update_every (int, optional) – update the counter every this many reads, defaults to
5000

Returns nested dictionary that contains number of conversions for each contig and position

Return type dictionary

dynast.preprocessing.snp.extract_conversions(conversions_path, index_path, alignments=None,
conversions=None, quality=27, n_threads=8)

Wrapper around extract_conversions_part that works in parallel

Parameters

• conversions_path (str) – path to conversions CSV

• index_path (str) – path to conversions index

• alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

• conversions (set, optional) – set of conversions to consider

• quality (int, optional) – only count conversions with PHRED quality greater than this
value, defaults to 27

• n_threads (int, optional) – number of threads, defaults to 8

Returns nested dictionary that contains number of conversions for each contig and position

Return type dictionary

4.1. Subpackages 51

dynast, Release 0.2.0

dynast.preprocessing.snp.detect_snps(conversions_path, index_path, coverage, snps_path,
alignments=None, conversions=None, quality=27, threshold=0.5,
min_coverage=1, n_threads=8)

Detect SNPs.

Parameters

• conversions_path (str) – path to conversions CSV

• index_path (str) – path to conversions index

• coverage (dict) – dictionary containing genomic coverage

• snps_path (str) – path to output SNPs

• alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

• conversions (set, optional) – set of conversions to consider

• quality (int, optional) – only count conversions with PHRED quality greater than this
value, defaults to 27

• threshold (float, optional) – positions with conversions / coverage > threshold will
be considered as SNPs, defaults to 0.5

• min_coverage (int, optional) – only positions with at least this many mapping
read_snps are considered, defaults to 1

• n_threads (int, optional) – number of threads, defaults to 8

Package Contents

52 Chapter 4. dynast

dynast, Release 0.2.0

Functions

aggregate_counts(df_counts, aggregates_path, con-
versions=frozenset([('TC',)]))

Aggregate conversion counts for each pair of bases.

calculate_mutation_rates(df_counts, rates_path,
group_by=None)

Calculate mutation rate for each pair of bases.

merge_aggregates(*dfs) Merge multiple aggregate dataframes into one.
read_aggregates(aggregates_path) Read aggregates CSV as a pandas dataframe.
read_rates(rates_path) Read mutation rates CSV as a pandas dataframe.
check_bam_contains_duplicate(bam_path,
n_reads=100000, n_threads=8)
check_bam_contains_secondary(bam_path,
n_reads=100000, n_threads=8)
check_bam_contains_unmapped(bam_path)

get_tags_from_bam(bam_path, n_reads=100000,
n_threads=8)

Utility function to retrieve all read tags present in a
BAM.

parse_all_reads(bam_path, conversions_path,
alignments_path, index_path, gene_infos, tran-
script_infos, strand='forward', umi_tag=None, bar-
code_tag=None, gene_tag='GX', barcodes=None,
n_threads=8, temp_dir=None, nasc=False, con-
trol=False, velocity=True, strict_exon_overlap=False,
return_splits=False)

Parse all reads in a BAM and extract conversion, content
and alignment

read_alignments(alignments_path, *args, **kwargs) Read alignments CSV as a pandas DataFrame.
read_conversions(conversions_path, *args,
**kwargs)

Read conversions CSV as a pandas DataFrame.

select_alignments(df_alignments) Select alignments among duplicates. This function per-
forms preliminary

sort_and_index_bam(bam_path, out_path,
n_threads=8, temp_dir=None)

Sort and index BAM.

call_consensus(bam_path, out_path, gene_infos,
strand='forward', umi_tag=None, barcode_tag=None,
gene_tag='GX', barcodes=None, quality=27,
add_RS_RI=False, temp_dir=None, n_threads=8)
complement_counts(df_counts, gene_infos) Complement the counts in the counts dataframe accord-

ing to gene strand.
count_conversions(conversions_path, align-
ments_path, index_path, counts_path, gene_infos,
barcodes=None, snps=None, quality=27, con-
versions=None, dedup_use_conversions=True,
n_threads=8, temp_dir=None)

Count the number of conversions of each read per bar-
code and gene, along with

deduplicate_counts(df_counts, conversions=None,
use_conversions=True)

Deduplicate counts based on barcode, UMI, and gene.

read_counts(counts_path, *args, **kwargs) Read counts CSV as a pandas dataframe.
split_counts_by_velocity(df_counts) Split the given counts dataframe by the velocity column.
calculate_coverage(bam_path, conversions,
coverage_path, alignments=None, umi_tag=None,
barcode_tag=None, gene_tag='GX', barcodes=None,
temp_dir=None, velocity=True)

Calculate coverage of each genomic position per bar-
code.

read_coverage(coverage_path) Read coverage CSV as a dictionary.
detect_snps(conversions_path, index_path, coverage,
snps_path, alignments=None, conversions=None, qual-
ity=27, threshold=0.5, min_coverage=1, n_threads=8)

Detect SNPs.

read_snp_csv(snp_csv) Read a user-provided SNPs CSV
read_snps(snps_path) Read SNPs CSV as a dictionary

4.1. Subpackages 53

dynast, Release 0.2.0

Attributes

CONVERSION_COMPLEMENT

dynast.preprocessing.aggregate_counts(df_counts, aggregates_path, conversions=frozenset([('TC',)]))
Aggregate conversion counts for each pair of bases.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand
bases

• aggregates_path (str) – path to write aggregate CSV

• conversions (list, optional) – conversion(s) in question, defaults to
frozenset([(‘TC’,)])

Returns path to aggregate CSV that was written

Return type str

dynast.preprocessing.calculate_mutation_rates(df_counts, rates_path, group_by=None)
Calculate mutation rate for each pair of bases.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand
bases

• rates_path (str) – path to write rates CSV

• group_by (list) – column(s) to group calculations by, defaults to None, which combines
all rows

Returns path to rates CSV

Return type str

dynast.preprocessing.merge_aggregates(*dfs)
Merge multiple aggregate dataframes into one.

Parameters *dfs – dataframes to merge

Returns merged dataframe

Return type pandas.DataFrame

dynast.preprocessing.read_aggregates(aggregates_path)
Read aggregates CSV as a pandas dataframe.

Parameters aggregates_path (str) – path to aggregates CSV

Returns aggregates dataframe

Return type pandas.DataFrame

dynast.preprocessing.read_rates(rates_path)
Read mutation rates CSV as a pandas dataframe.

Parameters rates_path (str) – path to rates CSV

Returns rates dataframe

54 Chapter 4. dynast

dynast, Release 0.2.0

Return type pandas.DataFrame

dynast.preprocessing.check_bam_contains_duplicate(bam_path, n_reads=100000, n_threads=8)

dynast.preprocessing.check_bam_contains_secondary(bam_path, n_reads=100000, n_threads=8)

dynast.preprocessing.check_bam_contains_unmapped(bam_path)

dynast.preprocessing.get_tags_from_bam(bam_path, n_reads=100000, n_threads=8)
Utility function to retrieve all read tags present in a BAM.

Parameters

• bam_path (str) – path to BAM

• n_reads (int, optional) – number of reads to consider, defaults to 100000

• n_threads (int, optional) – number of threads, defaults to 8

Returns set of all tags found

Return type set

dynast.preprocessing.parse_all_reads(bam_path, conversions_path, alignments_path, index_path,
gene_infos, transcript_infos, strand='forward', umi_tag=None,
barcode_tag=None, gene_tag='GX', barcodes=None, n_threads=8,
temp_dir=None, nasc=False, control=False, velocity=True,
strict_exon_overlap=False, return_splits=False)

Parse all reads in a BAM and extract conversion, content and alignment information as CSVs.

Parameters

• bam_path (str) – path to alignment BAM file

• conversions_path (str) – path to output information about reads that have conversions

• alignments_path (str) – path to alignments information about reads

• index_path (str) – path to conversions index

• no_index_path (str) – path to no conversions index

• gene_infos (dictionary) – dictionary containing gene information, as returned by
ngs.gtf.genes_and_transcripts_from_gtf

• transcript_infos (dictionary) – dictionary containing transcript information, as re-
turned by ngs.gtf.genes_and_transcripts_from_gtf

• strand (str, optional) – strandedness of the sequencing protocol, defaults to forward,
may be one of the following: forward, reverse, unstranded

• umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in
the umi column, defaults to None

• barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

• gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• n_threads (int, optional) – number of threads, defaults to 8

• temp_dir (str, optional) – path to temporary directory, defaults to None

4.1. Subpackages 55

dynast, Release 0.2.0

• nasc (bool, optional) – flag to change behavior to match NASC-seq pipeline, defaults
to False

• velocity (bool, optional) – whether or not to assign a velocity type to each read, de-
faults to True

• strict_exon_overlap (bool, optional) – Whether to use a stricter algorithm to assin
reads as spliced, defaults to False

• return_splits (bool, optional) – return BAM splits for later reuse, defaults to True

Returns (path to conversions, path to alignments, path to conversions index) If return_splits is True,
then there is an additional return value, which is a list of tuples containing split BAM paths and
number of reads in each BAM.

Return type (str, str, str) or (str, str, str, list)

dynast.preprocessing.read_alignments(alignments_path, *args, **kwargs)
Read alignments CSV as a pandas DataFrame.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

Parameters alignments_path (str) – path to alignments CSV

Returns conversions dataframe

Return type pandas.DataFrame

dynast.preprocessing.read_conversions(conversions_path, *args, **kwargs)
Read conversions CSV as a pandas DataFrame.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

Parameters conversions_path (str) – path to conversions CSV

Returns conversions dataframe

Return type pandas.DataFrame

dynast.preprocessing.select_alignments(df_alignments)
Select alignments among duplicates. This function performs preliminary deduplication and returns a list of tuples
(read_id, alignment index) to use for coverage calculation and SNP detection.

Parameters df_alignments (pandas.DataFrame) – alignments dataframe

Returns set of (read_id, alignment index) that were selected

Return type set

dynast.preprocessing.sort_and_index_bam(bam_path, out_path, n_threads=8, temp_dir=None)
Sort and index BAM.

If the BAM is already sorted, the sorting step is skipped.

Parameters

• bam_path (str) – path to alignment BAM file to sort

• out_path (str) – path to output sorted BAM

• n_threads (int, optional) – number of threads, defaults to 8

• temp_dir (str, optional) – path to temporary directory, defaults to None

Returns path to sorted and indexed BAM

Return type str

56 Chapter 4. dynast

dynast, Release 0.2.0

dynast.preprocessing.call_consensus(bam_path, out_path, gene_infos, strand='forward', umi_tag=None,
barcode_tag=None, gene_tag='GX', barcodes=None, quality=27,
add_RS_RI=False, temp_dir=None, n_threads=8)

dynast.preprocessing.complement_counts(df_counts, gene_infos)
Complement the counts in the counts dataframe according to gene strand.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe

• gene_infos (dictionary) – dictionary containing gene information, as returned by pre-
processing.gtf.parse_gtf

Returns counts dataframe with counts complemented for reads mapping to genes on the reverse
strand

Return type pandas.DataFrame

dynast.preprocessing.CONVERSION_COMPLEMENT

dynast.preprocessing.count_conversions(conversions_path, alignments_path, index_path, counts_path,
gene_infos, barcodes=None, snps=None, quality=27,
conversions=None, dedup_use_conversions=True, n_threads=8,
temp_dir=None)

Count the number of conversions of each read per barcode and gene, along with the total nucleotide content of
the region each read mapped to, also per barcode. When a duplicate UMI for a barcode is observed, the read
with the greatest number of conversions is selected.

Parameters

• conversions_path (str) – path to conversions CSV

• alignments_path (str) – path to alignments information about reads

• index_path (str) – path to conversions index

• counts_path – path to write counts CSV

• counts_path – str

• gene_infos (dictionary) – dictionary containing gene information, as returned by
ngs.gtf.genes_and_transcripts_from_gtf, defaults to None

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• snps (dictionary, optional) – dictionary of contig as keys and list of genomic positions
as values that indicate SNP locations, defaults to None

• conversions (list, optional) – conversions to prioritize when deduplicating only ap-
plicable for UMI technologies, defaults to None

• dedup_use_conversions (bool, optional) – prioritize reads that have at least one con-
version when deduplicating, defaults to True

• quality (int, optional) – only count conversions with PHRED quality greater than this
value, defaults to 27

• n_threads (int, optional) – number of threads, defaults to 8

• temp_dir (str, optional) – path to temporary directory, defaults to None

Returns path to counts CSV

4.1. Subpackages 57

dynast, Release 0.2.0

Return type str

dynast.preprocessing.deduplicate_counts(df_counts, conversions=None, use_conversions=True)
Deduplicate counts based on barcode, UMI, and gene.

The order of priority is the following. 1. If use_conversions=True, reads that have at least one such conversion
2. Reads that align to the transcriptome (exon only) 3. Reads that have highest alignment score 4. If conversions
is provided, reads that have a larger sum of such conversions

If conversions is not provided, reads that have larger sum of all conversions

Parameters

• df_counts (pandas.DataFrame) – counts dataframe

• conversions (list, optional) – conversions to prioritize, defaults to None

• use_conversions (bool, optional) – prioritize reads that have conversions first, de-
faults to True

Returns deduplicated counts dataframe

Return type pandas.DataFrame

dynast.preprocessing.read_counts(counts_path, *args, **kwargs)
Read counts CSV as a pandas dataframe.

Any additional arguments and keyword arguments are passed to pandas.read_csv.

Parameters counts_path (str) – path to CSV

Returns counts dataframe

Return type pandas.DataFrame

dynast.preprocessing.split_counts_by_velocity(df_counts)
Split the given counts dataframe by the velocity column.

Parameters df_counts (pandas.DataFrame) – counts dataframe

Returns dictionary containing velocity column values as keys and the subset dataframe as values

Return type dictionary

dynast.preprocessing.calculate_coverage(bam_path, conversions, coverage_path, alignments=None,
umi_tag=None, barcode_tag=None, gene_tag='GX',
barcodes=None, temp_dir=None, velocity=True)

Calculate coverage of each genomic position per barcode.

Parameters

• bam_path (str) – path to alignment BAM file

• conversions (dictionary) – dictionary of contigs as keys and sets of genomic positions
as values that indicates positions where conversions were observed

• coverage_path (str) – path to write coverage CSV

• alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

• umi_tag (str, optional) – BAM tag that encodes UMI, if not provided, NA is output in
the umi column, defaults to None

58 Chapter 4. dynast

dynast, Release 0.2.0

• barcode_tag (str, optional) – BAM tag that encodes cell barcode, if not provided, NA
is output in the barcode column, defaults to None

• gene_tag (str, optional) – BAM tag that encodes gene assignment, defaults to GX

• barcodes (list, optional) – list of barcodes to be considered. All barcodes are consid-
ered if not provided, defaults to None

• temp_dir (str, optional) – path to temporary directory, defaults to None

• velocity (bool, optional) – whether or not velocities were assigned

Returns coverage CSV path

Return type str

dynast.preprocessing.read_coverage(coverage_path)
Read coverage CSV as a dictionary.

Parameters coverage_path (str) – path to coverage CSV

Returns coverage as a nested dictionary

Return type dict

dynast.preprocessing.detect_snps(conversions_path, index_path, coverage, snps_path, alignments=None,
conversions=None, quality=27, threshold=0.5, min_coverage=1,
n_threads=8)

Detect SNPs.

Parameters

• conversions_path (str) – path to conversions CSV

• index_path (str) – path to conversions index

• coverage (dict) – dictionary containing genomic coverage

• snps_path (str) – path to output SNPs

• alignments (set, optional) – set of (read_id, alignment_index) tuples to process. All
alignments are processed if this option is not provided.

• conversions (set, optional) – set of conversions to consider

• quality (int, optional) – only count conversions with PHRED quality greater than this
value, defaults to 27

• threshold (float, optional) – positions with conversions / coverage > threshold will
be considered as SNPs, defaults to 0.5

• min_coverage (int, optional) – only positions with at least this many mapping
read_snps are considered, defaults to 1

• n_threads (int, optional) – number of threads, defaults to 8

dynast.preprocessing.read_snp_csv(snp_csv)
Read a user-provided SNPs CSV

Parameters snp_csv (str) – path to SNPs CSV

Returns dictionary of contigs as keys and sets of genomic positions with SNPs as values

Return type dictionary

4.1. Subpackages 59

dynast, Release 0.2.0

dynast.preprocessing.read_snps(snps_path)
Read SNPs CSV as a dictionary

Parameters snps_path (str) – path to SNPs CSV

Returns dictionary of contigs as keys and sets of genomic positions with SNPs as values

Return type dictionary

4.2 Submodules

4.2.1 dynast.align

Module Contents

Functions

STAR_solo(fastqs, index_dir, out_dir, technology,
whitelist_path=None, strand='forward', n_threads=8,
temp_dir=None, nasc=False, overrides=None)

Align FASTQs with STARsolo.

align(fastqs, index_dir, out_dir, technology,
whitelist_path=None, strand='forward', n_threads=8,
temp_dir=None, nasc=False, overrides=None)

dynast.align.STAR_solo(fastqs, index_dir, out_dir, technology, whitelist_path=None, strand='forward',
n_threads=8, temp_dir=None, nasc=False, overrides=None)

Align FASTQs with STARsolo.

Parameters

• fastqs (list) – list of path to FASTQs. Order matters – STAR assumes the UMI and
barcode are in read 2

• index_dir (str) – path to directory containing STAR index

• out_dir (str) – path to directory to place STAR output

• technology (collections.namedtuple) – a Technology object defined in technology.py

• whitelist_path (str, optional) – path to textfile containing barcode whitelist, defaults
to None

• strand (str, optional) – strandedness of the sequencing protocol, defaults to forward,
may be one of the following: forward, reverse, unstranded

• n_threads (int, optional) – number of threads to use, defaults to 8

• temp_dir (str, optional) – STAR temporary directory, defaults to None, which uses the
system temporary directory

• nasc (bool, optional) – whether or not to use STAR configuration used in NASC-seq
pipeline, defaults to False

• overrides (dictionary, optional) – STAR command-line argument overrides, de-
faults to None

Returns dictionary containing output files

60 Chapter 4. dynast

dynast, Release 0.2.0

Return type dict

dynast.align.align(fastqs, index_dir, out_dir, technology, whitelist_path=None, strand='forward', n_threads=8,
temp_dir=None, nasc=False, overrides=None)

4.2.2 dynast.config

Module Contents

dynast.config.PACKAGE_PATH

dynast.config.PLATFORM

dynast.config.BINS_DIR

dynast.config.MODELS_DIR

dynast.config.MODEL_PATH

dynast.config.MODEL_NAME = pi

dynast.config.RECOMMENDED_MEMORY

dynast.config.STAR_ARGUMENTS

dynast.config.STAR_SOLO_ARGUMENTS

dynast.config.NASC_ARGUMENTS

dynast.config.BAM_PEEK_READS = 500000

dynast.config.BAM_REQUIRED_TAGS = ['MD']

dynast.config.BAM_READGROUP_TAG = RG

dynast.config.BAM_BARCODE_TAG = CB

dynast.config.BAM_UMI_TAG = UB

dynast.config.BAM_GENE_TAG = GX

dynast.config.BAM_CONSENSUS_READ_COUNT_TAG = RN

dynast.config.COUNTS_SPLIT_THRESHOLD = 50000

dynast.config.VELOCITY_BLACKLIST = ['unassigned', 'ambiguous']

4.2.3 dynast.consensus

Module Contents

Functions

consensus(bam_path, gtf_path, out_dir,
strand='forward', umi_tag=None, barcode_tag=None,
gene_tag='GX', barcodes=None, quality=27,
add_RS_RI=False, n_threads=8, temp_dir=None)

4.2. Submodules 61

dynast, Release 0.2.0

dynast.consensus.consensus(bam_path, gtf_path, out_dir, strand='forward', umi_tag=None,
barcode_tag=None, gene_tag='GX', barcodes=None, quality=27,
add_RS_RI=False, n_threads=8, temp_dir=None)

4.2.4 dynast.constants

Module Contents

dynast.constants.STATS_PREFIX = run_info

dynast.constants.STAR_SOLO_DIR = Solo.out

dynast.constants.STAR_GENE_DIR = Gene

dynast.constants.STAR_RAW_DIR = raw

dynast.constants.STAR_FILTERED_DIR = filtered

dynast.constants.STAR_VELOCYTO_DIR = Velocyto

dynast.constants.STAR_BAM_FILENAME = Aligned.sortedByCoord.out.bam

dynast.constants.STAR_BAI_FILENAME = Aligned.sortedByCoord.out.bai

dynast.constants.STAR_BARCODES_FILENAME = barcodes.tsv

dynast.constants.STAR_FEATURES_FILENAME = features.tsv

dynast.constants.STAR_MATRIX_FILENAME = matrix.mtx

dynast.constants.CONSENSUS_BAM_FILENAME = consensus.bam

dynast.constants.COUNT_DIR = count

dynast.constants.PARSE_DIR = 0_parse

dynast.constants.CONVS_FILENAME = convs.pkl.gz

dynast.constants.GENES_FILENAME = genes.pkl.gz

dynast.constants.CONVERSIONS_FILENAME = conversions.csv

dynast.constants.CONVERSIONS_INDEX_FILENAME = conversions.idx

dynast.constants.ALIGNMENTS_FILENAME = alignments.csv

dynast.constants.COVERAGE_FILENAME = coverage.csv

dynast.constants.COVERAGE_INDEX_FILENAME = coverage.idx

dynast.constants.SNPS_FILENAME = snps.csv

dynast.constants.COUNTS_PREFIX = counts

dynast.constants.ESTIMATE_DIR = estimate

dynast.constants.RATES_FILENAME = rates.csv

62 Chapter 4. dynast

dynast, Release 0.2.0

dynast.constants.P_E_FILENAME = p_e.csv

dynast.constants.P_C_PREFIX = p_c

dynast.constants.AGGREGATE_FILENAME = aggregate.csv

dynast.constants.ADATA_FILENAME = adata.h5ad

4.2.5 dynast.count

Module Contents

Functions

count(bam_path, gtf_path, out_dir, strand='forward',
umi_tag=None, barcode_tag=None, gene_tag='GX',
barcodes=None, control=False, quality=27, con-
versions=frozenset([('TC',)]), snp_threshold=0.5,
snp_min_coverage=1, snp_csv=None,
n_threads=8, temp_dir=None, velocity=True,
strict_exon_overlap=False, dedup_mode='auto',
nasc=False, overwrite=False)

dynast.count.count(bam_path, gtf_path, out_dir, strand='forward', umi_tag=None, barcode_tag=None,
gene_tag='GX', barcodes=None, control=False, quality=27,
conversions=frozenset([('TC',)]), snp_threshold=0.5, snp_min_coverage=1, snp_csv=None,
n_threads=8, temp_dir=None, velocity=True, strict_exon_overlap=False,
dedup_mode='auto', nasc=False, overwrite=False)

4.2.6 dynast.estimate

Module Contents

Functions

estimate(count_dirs, out_dir, reads='complete',
groups=None, ignore_groups_for_pi=True,
genes=None, downsample=None, downsam-
ple_mode='uniform', cell_threshold=1000,
cell_gene_threshold=16, control_p_e=None, con-
trol=False, n_threads=8, temp_dir=None, nasc=False,
seed=None)

dynast.estimate.estimate(count_dirs, out_dir, reads='complete', groups=None, ignore_groups_for_pi=True,
genes=None, downsample=None, downsample_mode='uniform',
cell_threshold=1000, cell_gene_threshold=16, control_p_e=None, control=False,
n_threads=8, temp_dir=None, nasc=False, seed=None)

4.2. Submodules 63

dynast, Release 0.2.0

4.2.7 dynast.logging

Module Contents

dynast.logging.logger

4.2.8 dynast.main

Module Contents

Functions

print_technologies() Displays a list of supported technologies along with
whether a whitelist

setup_ref_args(parser, parent) Helper function to set up a subparser for the ref com-
mand.

setup_align_args(parser, parent)

setup_consensus_args(parser, parent) Helper function to set up a subparser for the consensus
command.

setup_count_args(parser, parent) Helper function to set up a subparser for the count com-
mand.

setup_estimate_args(parser, parent) Helper function to set up a subparser for the estimate
command.

parse_ref (parser, args, temp_dir=None) Parser for the ref command.
parse_align(parser, args, temp_dir=None)

parse_consensus(parser, args, temp_dir=None) Parser for the consensus command.
parse_count(parser, args, temp_dir=None) Parser for the count command.
parse_estimate(parser, args, temp_dir=None)

main()

Attributes

COMMAND_TO_FUNCTION

dynast.main.print_technologies()

Displays a list of supported technologies along with whether a whitelist is provided for that technology.

dynast.main.setup_ref_args(parser, parent)
Helper function to set up a subparser for the ref command.

Parameters

• parser – argparse parser to add the ref command to

64 Chapter 4. dynast

dynast, Release 0.2.0

• parent – argparse parser parent of the newly added subcommand. used to inherit shared
commands/flags

Returns the newly added parser

Return type argparse.ArgumentParser

dynast.main.setup_align_args(parser, parent)

dynast.main.setup_consensus_args(parser, parent)
Helper function to set up a subparser for the consensus command.

Parameters

• parser – argparse parser to add the consensus command to

• parent – argparse parser parent of the newly added subcommand. used to inherit shared
commands/flags

Returns the newly added parser

Return type argparse.ArgumentParser

dynast.main.setup_count_args(parser, parent)
Helper function to set up a subparser for the count command.

Parameters

• parser – argparse parser to add the count command to

• parent – argparse parser parent of the newly added subcommand. used to inherit shared
commands/flags

Returns the newly added parser

Return type argparse.ArgumentParser

dynast.main.setup_estimate_args(parser, parent)
Helper function to set up a subparser for the estimate command.

Parameters

• parser – argparse parser to add the estimate command to

• parent – argparse parser parent of the newly added subcommand. used to inherit shared
commands/flags

Returns the newly added parser

Return type argparse.ArgumentParser

dynast.main.parse_ref(parser, args, temp_dir=None)
Parser for the ref command. :param args: Command-line arguments dictionary, as parsed by argparse :type args:
dict

dynast.main.parse_align(parser, args, temp_dir=None)

dynast.main.parse_consensus(parser, args, temp_dir=None)
Parser for the consensus command. :param args: Command-line arguments dictionary, as parsed by argparse
:type args: dict

dynast.main.parse_count(parser, args, temp_dir=None)
Parser for the count command. :param args: Command-line arguments dictionary, as parsed by argparse :type
args: dict

4.2. Submodules 65

dynast, Release 0.2.0

dynast.main.parse_estimate(parser, args, temp_dir=None)

dynast.main.COMMAND_TO_FUNCTION

dynast.main.main()

4.2.9 dynast.ref

Module Contents

Functions

STAR_genomeGenerate(fasta_path, gtf_path, in-
dex_dir, n_threads=8, memory=16 * 1024**3,
temp_dir=None)

Generate a STAR index from a reference.

ref (fasta_path, gtf_path, index_dir, n_threads=8, mem-
ory=16 * 1024**3, temp_dir=None)

dynast.ref.STAR_genomeGenerate(fasta_path, gtf_path, index_dir, n_threads=8, memory=16 * 1024 ** 3,
temp_dir=None)

Generate a STAR index from a reference.

Parameters

• fasta_path (str) – path to genome fasta

• gtf_path (str) – path to GTF annotation

• index_dir (str) – path to output STAR index

• n_threads (int, optional) – number of threads, defaults to 8

• memory (int, optional) – suggested memory to use (this is not guaranteed), in bytes,
defaults to 16 * 1024**3

• temp_dir (str, optional) – temporary directory, defaults to None

Returns dictionary of generated index

Return type dictionary

dynast.ref.ref(fasta_path, gtf_path, index_dir, n_threads=8, memory=16 * 1024 ** 3, temp_dir=None)

4.2.10 dynast.stats

Module Contents

Classes

Step Class that represents a processing step.
Stats Class used to collect run statistics.

66 Chapter 4. dynast

dynast, Release 0.2.0

class dynast.stats.Step(skipped=False, **kwargs)
Class that represents a processing step.

start(self)
Signal the step has started.

end(self)
Signal the step has ended.

to_dict(self)
Convert this step to a dictionary.

Returns dictionary of class variables

Return type dictionary

class dynast.stats.Stats

Class used to collect run statistics.

start(self)
Start collecting statistics.

Sets start time, the command line call.

end(self)
End collecting statistics.

step(self, key, skipped=False, **kwargs)
Register a processing step.

Any additional keyword arguments are passed to the constructor of Step.

Parameters

• key (str) – processing key

• skipped (bool, optional) – whether or not this step is skipped, defaults to False

save(self, path)
Save statistics as JSON to path.

Parameters path (str) – path to JSON

Returns path to saved JSON

Return type str

to_dict(self)
Convert statistics to dictionary, so that it is easily parsed by the report-rendering functions.

4.2.11 dynast.technology

Module Contents

dynast.technology.Technology

dynast.technology.BARCODE_UMI_TECHNOLOGIES

dynast.technology.PLATE_TECHNOLOGIES

4.2. Submodules 67

dynast, Release 0.2.0

dynast.technology.TECHNOLOGIES

dynast.technology.TECHNOLOGIES_MAP

4.2.12 dynast.utils

Module Contents

Classes

suppress_stdout_stderr A context manager for doing a "deep suppression" of std-
out and stderr in

68 Chapter 4. dynast

dynast, Release 0.2.0

Functions

get_STAR_binary_path () Get the path to the platform-dependent STAR binary in-
cluded with

get_STAR_version() Get the provided STAR version.
combine_arguments(args, additional) Combine two dictionaries representing command-line

arguments.
arguments_to_list(args) Convert a dictionary of command-line arguments to a

list.
get_file_descriptor_limit() Get the current value for the maximum number of open

file descriptors
get_max_file_descriptor_limit() Get the maximum allowed value for the maximum num-

ber of open file
increase_file_descriptor_limit(limit) Context manager that can be used to temporarily in-

crease the maximum
get_available_memory() Get total amount of available memory (total memory -

used memory) in bytes.
make_pool_with_counter(n_threads) Create a new Process pool with a shared progress

counter.
display_progress_with_counter(counter, total,
*async_results, desc=None)

Display progress bar for displaying multiprocessing
progress.

as_completed_with_progress(futures) Wrapper around concurrent.futures.as_completed that
displays a progress bar.

split_index(index, n=8) Split a conversions index, which is a list of tuples (file
position,

downsample_counts(df_counts, proportion=None,
count=None, seed=None, group_by=None)

Downsample the given counts dataframe according to
the proportion or

counts_to_matrix(df_counts, barcodes, features,
barcode_column='barcode', feature_column='GX')

Convert a counts dataframe to a sparse counts matrix.

split_counts(df_counts, barcodes, features, bar-
code_column='barcode', feature_column='GX', conver-
sions=('TC',))

Split counts dataframe into two count matrices by a col-
umn.

split_matrix(matrix, pis, barcodes, features) Split the given matrix based on provided fraction of new
RNA.

results_to_adata(df_counts, conver-
sions=frozenset([('TC',)]), gene_infos=None,
pis=None)

Compile all results to a single anndata.

patch_mp_connection_bpo_17560() Apply PR-10305 / bpo-17560 connection send/receive
max size update

4.2. Submodules 69

dynast, Release 0.2.0

Attributes

run_executable

open_as_text

decompress_gzip

flatten_dict_values

mkstemp

all_exists

flatten_dictionary

flatten_iter

merge_dictionaries

write_pickle

read_pickle

dynast.utils.run_executable

dynast.utils.open_as_text

dynast.utils.decompress_gzip

dynast.utils.flatten_dict_values

dynast.utils.mkstemp

dynast.utils.all_exists

dynast.utils.flatten_dictionary

dynast.utils.flatten_iter

dynast.utils.merge_dictionaries

dynast.utils.write_pickle

dynast.utils.read_pickle

exception dynast.utils.UnsupportedOSException

Bases: Exception

Common base class for all non-exit exceptions.

class dynast.utils.suppress_stdout_stderr

A context manager for doing a “deep suppression” of stdout and stderr in Python, i.e. will suppress all print,
even if the print originates in a compiled C/Fortran sub-function.

70 Chapter 4. dynast

dynast, Release 0.2.0

This will not suppress raised exceptions, since exceptions are printed

to stderr just before a script exits, and after the context manager has exited (at least, I think that is why it lets
exceptions through). https://github.com/facebook/prophet/issues/223

__enter__(self)

__exit__(self, *_)

dynast.utils.get_STAR_binary_path()

Get the path to the platform-dependent STAR binary included with the installation.

Returns path to the binary

Return type str

dynast.utils.get_STAR_version()

Get the provided STAR version.

Returns version string

Return type str

dynast.utils.combine_arguments(args, additional)
Combine two dictionaries representing command-line arguments.

Any duplicate keys will be merged according to the following procedure: 1. If the value in both dictionaries are
lists, the two lists are combined. 2. Otherwise, the value in the first dictionary is OVERWRITTEN.

Parameters

• args (dictionary) – original command-line arguments

• additional (dictionary) – additional command-line arguments

Returns combined command-line arguments

Return type dictionary

dynast.utils.arguments_to_list(args)
Convert a dictionary of command-line arguments to a list.

Parameters args (dictionary) – command-line arguments

Returns list of command-line arguments

Return type list

dynast.utils.get_file_descriptor_limit()

Get the current value for the maximum number of open file descriptors in a platform-dependent way.

Returns the current value of the maximum number of open file descriptors.

Return type int

dynast.utils.get_max_file_descriptor_limit()

Get the maximum allowed value for the maximum number of open file descriptors.

Note that for Windows, there is not an easy way to get this, as it requires reading from the registry. So, we just
return the maximum for a vanilla Windows installation, which is 8192. https://docs.microsoft.com/en-us/cpp/
c-runtime-library/reference/setmaxstdio?view=vs-2019

Similarly, on MacOS, we return a hardcoded 10240.

Returns maximum allowed value for the maximum number of open file descriptors

4.2. Submodules 71

https://github.com/facebook/prophet/issues/223
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/setmaxstdio?view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/setmaxstdio?view=vs-2019

dynast, Release 0.2.0

Return type int

dynast.utils.increase_file_descriptor_limit(limit)
Context manager that can be used to temporarily increase the maximum number of open file descriptors for the
current process. The original value is restored when execution exits this function.

This is required when running STAR with many threads.

Parameters limit (int) – maximum number of open file descriptors will be increased to this value
for the duration of the context

dynast.utils.get_available_memory()

Get total amount of available memory (total memory - used memory) in bytes.

Returns available memory in bytes

Return type int

dynast.utils.make_pool_with_counter(n_threads)
Create a new Process pool with a shared progress counter.

Parameters n_threads (int) – number of processes

Returns (Process pool, progress counter, lock)

Return type (multiprocessing.Pool, multiprocessing.Value, multiprocessing.Lock)

dynast.utils.display_progress_with_counter(counter, total, *async_results, desc=None)
Display progress bar for displaying multiprocessing progress.

Parameters

• counter (multiprocessing.Value) – progress counter

• total (int) – maximum number of units of processing

• *async_results – multiprocessing results to monitor. These are used to determine when
all processes are done.

• desc (str, optional) – progress bar description, defaults to None

dynast.utils.as_completed_with_progress(futures)
Wrapper around concurrent.futures.as_completed that displays a progress bar.

Parameters futures (iterable) – iterator of concurrent.futures.Future objects

dynast.utils.split_index(index, n=8)
Split a conversions index, which is a list of tuples (file position, number of lines, alignment position), one for each
read, into n approximately equal parts. This function is used to split the conversions CSV for multiprocessing.

Parameters

• index (list) – index

• n (int, optional) – number of splits, defaults to 8

Returns list of parts, where each part is a list of (file position, number of lines, alignment position)
tuples

Return type list

dynast.utils.downsample_counts(df_counts, proportion=None, count=None, seed=None, group_by=None)
Downsample the given counts dataframe according to the proportion or count arguments. One of these two
must be provided, but not both. The dataframe is assumed to be UMI-deduplicated.

72 Chapter 4. dynast

dynast, Release 0.2.0

Parameters

• df_counts (pandas.DataFrame) – counts dataframe

• proportion (float, optional) – proportion of reads (UMIs) to keep, defaults to None

• count (int, optional) – absolute number of reads (UMIs) to keep, defaults to None

• seed (int, optional) – random seed, defaults to None

• group_by (list, optional) – Columns in the counts dataframe to use to group entries.
When this is provided, UMIs are no longer sampled at random, but instead grouped by this
argument, and only groups that have more than count UMIs are downsampled.

Returns downsampled counts dataframe

Return type pandas.DataFrame

dynast.utils.counts_to_matrix(df_counts, barcodes, features, barcode_column='barcode',
feature_column='GX')

Convert a counts dataframe to a sparse counts matrix.

Counts are assumed to be appropriately deduplicated.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe

• barcodes (list) – list of barcodes that will map to the rows

• features (list) – list of features (i.e. genes) that will map to the columns

• barcode_column (str) – column in counts dataframe to use as barcodes, defaults to bar-
code

• feature_column (str) – column in counts dataframe to use as features, defaults to GX

Returns sparse counts matrix

Return type scipy.sparse.csrmatrix

dynast.utils.split_counts(df_counts, barcodes, features, barcode_column='barcode', feature_column='GX',
conversions=('TC',))

Split counts dataframe into two count matrices by a column.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe

• barcodes (list) – list of barcodes that will map to the rows

• features (list) – list of features (i.e. genes) that will map to the columns

• barcode_column (str, optional) – column in counts dataframe to use as barcodes, de-
faults to barcode

• feature_column (str, optional) – column in counts dataframe to use as features, de-
faults to GX

• conversions (tuple, optional) – conversion(s) in question, defaults to (‘TC’,)

Returns (count matrix of conversion==0, count matrix of conversion>0)

Return type (scipy.sparse.csrmatrix, scipy.sparse.csrmatrix)

4.2. Submodules 73

dynast, Release 0.2.0

dynast.utils.split_matrix(matrix, pis, barcodes, features)
Split the given matrix based on provided fraction of new RNA.

Parameters

• matrix (numpy.ndarray or scipy.sparse.spmatrix) – matrix to split

• pis (dictionary) – dictionary containing pi estimates

• barcodes (list) – all barcodes

• features (list) – all features (i.e. genes)

Returns (matrix of pi masks, matrix of unlabeled RNA, matrix of labeled RNA)

Return type (scipy.sparse.spmatrix, scipy.sparse.spmatrix, scipy.sparse.spmatrix)

dynast.utils.results_to_adata(df_counts, conversions=frozenset([('TC',)]), gene_infos=None, pis=None)
Compile all results to a single anndata.

Parameters

• df_counts (pandas.DataFrame) – counts dataframe, with complemented reverse strand
bases

• conversions (list, optional) – conversion(s) in question, defaults to
frozenset([(‘TC’,)])

• gene_infos (dict, optional) – dictionary containing gene information, defaults to None

• pis (dict, optional) – dictionary of estimated pis, defaults to None

Returns anndata containing all results

Return type anndata.AnnData

dynast.utils.patch_mp_connection_bpo_17560()

Apply PR-10305 / bpo-17560 connection send/receive max size update

See the original issue at https://bugs.python.org/issue17560 and https://github.com/python/cpython/pull/10305
for the pull request.

This only supports Python versions 3.3 - 3.7, this function does nothing for Python versions outside of that range.

Taken from https://stackoverflow.com/a/47776649

4.3 Package Contents

dynast.__version__ = 0.2.0

74 Chapter 4. dynast

https://bugs.python.org/issue17560
https://github.com/python/cpython/pull/10305
https://stackoverflow.com/a/47776649

CHAPTER

FIVE

REFERENCES

75

dynast, Release 0.2.0

76 Chapter 5. References

CHAPTER

SIX

NASC-SEQ

The new transcriptome alkylation-dependent scRNA-seq (NASC-seq) was developed by [Hendriks2019]. It uses
Smart-seq, which is a plate-based scRNA-seq method that provides great read coverage, compared to droplet-based
methods [Picelli2013]. Smart-seq experiments generate single or pairs of FASTQs for each cell sequenced, which
dynast processes simultaneously.

• Sequencing technology: Smart-Seq2

• Induced conversion: T>C

6.1 Alignment

Here, we assume the appropriate STAR index has already been built (see Building the STAR index with ref). Since we
have multiple sets of FASTQs, we need to prepare a FASTQ manifest CSV, instead of providing these as an argument
to dynast align. The manifest CSV contains three columns where the first column is a unique cell name/ID, the
second column is the path to the first FASTQ, and the third is the path to the second FASTQ. For single-end reads, the
third column can be a single - character. Here is an example with two cells:

cell_1,path/to/R1.fastq.gz,path/to/R2.fastq.gz
cell_2,path/to/R1.fastq.gz,-

Then, we use this manifest as the input to dynast align.

dynast align -i path/to/STAR/index -o path/to/align/output -x smartseq manifest.csv

This will run STAR alignment and output files to path/to/align/output.

6.2 Quantification

The alignment BAM is generated at path/to/align/output/Aligned.sortedByCoord.out.bam, which we
provde as input to dynast count. We also need to provide the gene annotation GTF that was used to generate the
STAR index to -g.

dynast count -g path/to/GTF.gtf --barcode-tag RG path/to/align/output/Aligned.
→˓sortedByCoord.out.bam -o path/to/count/output --conversion TC

This will quantify all RNA species and write the count matrices to path/to/count/output/adata.h5ad.

77

dynast, Release 0.2.0

78 Chapter 6. NASC-seq

CHAPTER

SEVEN

SCSLAM-SEQ

scSLAM-seq was developed by [Erhard2019] and is the single-cell adaptation of thiol(SH)-linked alkylation for
metabolic sequencing of RNA (SLAM-seq) [Herzog2017]. Similar to NASC-seq, scSLAM-seq is based on the Smart-
seq protocol [Picelli2013]. Smart-seq experiments generate single or pairs of FASTQs for each cell sequenced, which
dynast processes simultaneously.

• Sequencing technology: Smart-Seq2

• Induced conversion: T>C

7.1 Alignment

Here, we assume the appropriate STAR index has already been built (see Building the STAR index with ref). Since we
have multiple sets of FASTQs, we need to prepare a FASTQ manifest CSV, instead of providing these as an argument
to dynast align. The manifest CSV contains three columns where the first column is a unique cell name/ID, the
second column is the path to the first FASTQ, and the third is the path to the second FASTQ. For single-end reads, the
third column can be a single - character. Here is an example with two cells:

cell_1,path/to/R1.fastq.gz,path/to/R2.fastq.gz
cell_2,path/to/R1.fastq.gz,-

Then, we use this manifest as the input to dynast align.

dynast align -i path/to/STAR/index -o path/to/align/output -x smartseq --strand␣
→˓unstranded manifest.csv

Note that we provide --strand unstranded because the Smart-seq protocol used with scSLAM-seq produces un-
stranded reads. This will run STAR alignment and output files to path/to/align/output.

7.2 Quantification

The alignment BAM is generated at path/to/align/output/Aligned.sortedByCoord.out.bam, which we
provde as input to dynast count. We also need to provide the gene annotation GTF that was used to generate the
STAR index to -g.

dynast count -g path/to/GTF.gtf --barcode-tag RG path/to/align/output/Aligned.
→˓sortedByCoord.out.bam -o path/to/count/output --conversion TC --strand unstranded

Note that we provide --strand unstranded again because the Smart-seq protocol used with scSLAM-seq produces
unstranded reads. This will quantify all RNA species and write the count matrices to path/to/count/output/
adata.h5ad.

79

dynast, Release 0.2.0

80 Chapter 7. scSLAM-seq

CHAPTER

EIGHT

SCNT-SEQ

The single-cell metabolically labeled new RNA tagging sequencing (scNT-seq) was developed by [Qiu2020]. It uses
Drop-seq, which is a droplet-based scRNA-seq method [Macosko2015].

• Sequencing technology: Drop-seq

• Induced conversion: T>C

8.1 Alignment

Here, we assume the appropriate STAR index has already been built (see Building the STAR index with ref). A single
sample will consist of a pair of FASTQs, one containing the cell barcode and UMI sequences and the other containing
the biological cDNA sequences. Let’s say these two FASTQs are barcode_umi.fastq.gz and cdna.fastq.gz.

dynast align -i path/to/STAR/index -o path/to/align/output -x dropseq cdna.fastq.gz␣
→˓barcode_umi.fastq.gz

This will run STAR alignment and output files to path/to/align/output.

8.2 Consensus

Optionally, we can call consensus sequences for each UMI using dynast consensus. This command requires the
alignment BAM and the gene annotation GTF that was used to generate the STAR index.

dynast consensus -g path/to/GTF.gtf --barcode-tag CB --umi-tag UB path/to/align/output/
→˓Aligned.sortedByCoord.out.bam -o path/to/consensus/output

This will create a new BAM file named path/to/consensus/output/consensus.bam, which you can then use in
the next step in place of the original alignment BAM.

81

dynast, Release 0.2.0

8.3 Quantification

Finally, to quantify the number of labeled/unlabeled RNA, we run dynast countwith the appropriate alignment BAM
and the gene annotation GTF that was used to generate the STAR index to -g.

dynast count -g path/to/GTF.gtf --barcode-tag CB --umi-tag UB path/to/alignment.bam -o␣
→˓path/to/count/output --conversion TC

where path/to/alignment.bam should be path/to/align/output/Aligned.sortedByCoord.out.bam if you
did not run dynast consensus, or path/to/consensus/output/consensus.bam if you did.

This will quantify all RNA species and write the count matrices to path/to/count/output/adata.h5ad.

82 Chapter 8. scNT-seq

CHAPTER

NINE

SCI-FATE

The single-cell combinatorial indexing and messenger RNA labeling (sci-fate) was developed by [Cao2020].

• Sequencing technology: sci-fate

• Induced conversion: T>C

9.1 Alignment

Here, we assume the appropriate STAR index has already been built (see Building the STAR index with ref). A single
sample will consist of a pair of FASTQs, one containing the cell barcode and UMI sequences and the other containing
the biological cDNA sequences. Let’s say these two FASTQs are barcode_umi.fastq.gz and cdna.fastq.gz.

dynast align -i path/to/STAR/index -o path/to/align/output -x scifate cdna.fastq.gz␣
→˓barcode_umi.fastq.gz

This will run STAR alignment and output files to path/to/align/output.

9.2 Consensus

Optionally, we can call consensus sequences for each UMI using dynast consensus. This command requires the
alignment BAM and the gene annotation GTF that was used to generate the STAR index.

dynast consensus -g path/to/GTF.gtf --barcode-tag CB --umi-tag UB path/to/align/output/
→˓Aligned.sortedByCoord.out.bam -o path/to/consensus/output

This will create a new BAM file named path/to/consensus/output/consensus.bam, which you can then use in
the next step in place of the original alignment BAM.

9.3 Quantification

Finally, to quantify the number of labeled/unlabeled RNA, we run dynast countwith the appropriate alignment BAM
and the gene annotation GTF that was used to generate the STAR index to -g.

dynast count -g path/to/GTF.gtf --barcode-tag CB --umi-tag UB path/to/alignment.bam -o␣
→˓path/to/count/output --conversion TC

83

dynast, Release 0.2.0

where path/to/alignment.bam should be path/to/align/output/Aligned.sortedByCoord.out.bam if you
did not run dynast consensus, or path/to/consensus/output/consensus.bam if you did.

This will quantify all RNA species and write the count matrices to path/to/count/output/adata.h5ad.

84 Chapter 9. sci-fate

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

85

dynast, Release 0.2.0

86 Chapter 10. Indices and tables

BIBLIOGRAPHY

[Dobin2013] https://doi.org/10.1093/bioinformatics/bts635

[Picelli2013] https://doi.org/10.1038/nmeth.2639

[Macosko2015] https://doi.org/10.1016/j.cell.2015.05.002

[Herzog2017] https://doi.org/10.1038/nmeth.4435

[Jürges2018] https://doi.org/10.1093/bioinformatics/bty256

[Erhard2019] https://doi.org/10.1038/s41586-019-1369-y

[Hendriks2019] https://doi.org/10.1038/s41467-019-11028-9

[Cao2020] https://doi.org/10.1038/s41587-020-0480-9

[Qiu2020] https://doi.org/10.1038/s41592-020-0935-4

87

https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/nmeth.2639
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1038/nmeth.4435
https://doi.org/10.1093/bioinformatics/bty256
https://doi.org/10.1038/s41586-019-1369-y
https://doi.org/10.1038/s41467-019-11028-9
https://doi.org/10.1038/s41587-020-0480-9
https://doi.org/10.1038/s41592-020-0935-4

dynast, Release 0.2.0

88 Bibliography

PYTHON MODULE INDEX

d
dynast, 25
dynast.align, 60
dynast.benchmarking, 25
dynast.benchmarking.simulation, 25
dynast.config, 61
dynast.consensus, 61
dynast.constants, 62
dynast.count, 63
dynast.estimate, 63
dynast.estimation, 27
dynast.estimation.p_c, 27
dynast.estimation.p_e, 29
dynast.estimation.pi, 30
dynast.logging, 64
dynast.main, 64
dynast.preprocessing, 36
dynast.preprocessing.aggregation, 36
dynast.preprocessing.bam, 37
dynast.preprocessing.consensus, 42
dynast.preprocessing.conversion, 44
dynast.preprocessing.coverage, 48
dynast.preprocessing.snp, 50
dynast.ref, 66
dynast.stats, 66
dynast.technology, 67
dynast.utils, 68

89

dynast, Release 0.2.0

90 Python Module Index

INDEX

Symbols
__enter__() (dynast.utils.suppress_stdout_stderr

method), 71
__exit__() (dynast.utils.suppress_stdout_stderr

method), 71
__model (in module dynast.benchmarking.simulation),

26
__version__ (in module dynast), 74
_model (in module dynast.estimation.pi), 31
_pi_model (in module dynast.benchmarking.simulation),

26
_simulate() (in module dy-

nast.benchmarking.simulation), 26

A
ADATA_FILENAME (in module dynast.constants), 63
aggregate_counts() (in module dy-

nast.preprocessing), 54
aggregate_counts() (in module dy-

nast.preprocessing.aggregation), 37
AGGREGATE_FILENAME (in module dynast.constants), 63
align() (in module dynast.align), 61
ALIGNMENT_COLUMNS (in module dy-

nast.preprocessing.bam), 38
ALIGNMENTS_FILENAME (in module dynast.constants), 62
ALIGNMENTS_PARSER (in module dy-

nast.preprocessing.conversion), 45
all_exists (in module dynast.utils), 70
arguments_to_list() (in module dynast.utils), 71
as_completed_with_progress() (in module dy-

nast.utils), 72

B
BAM_BARCODE_TAG (in module dynast.config), 61
BAM_CONSENSUS_READ_COUNT_TAG (in module dy-

nast.config), 61
BAM_GENE_TAG (in module dynast.config), 61
BAM_PEEK_READS (in module dynast.config), 61
BAM_READGROUP_TAG (in module dynast.config), 61
BAM_REQUIRED_TAGS (in module dynast.config), 61
BAM_UMI_TAG (in module dynast.config), 61

BARCODE_UMI_TECHNOLOGIES (in module dy-
nast.technology), 67

BASE_COLUMNS (in module dy-
nast.preprocessing.conversion), 45

BASE_IDX (in module dynast.preprocessing.consensus),
43

BASE_IDX (in module dynast.preprocessing.conversion),
45

BASES (in module dynast.preprocessing.consensus), 43
beta_mean() (in module dynast.estimation.pi), 31
beta_mode() (in module dynast.estimation.pi), 31
binomial_pmf() (in module dynast.estimation.p_c), 27
BINS_DIR (in module dynast.config), 61

C
calculate_coverage() (in module dy-

nast.preprocessing), 58
calculate_coverage() (in module dy-

nast.preprocessing.coverage), 49
calculate_coverage_contig() (in module dy-

nast.preprocessing.coverage), 49
calculate_mutation_rates() (in module dy-

nast.preprocessing), 54
calculate_mutation_rates() (in module dy-

nast.preprocessing.aggregation), 36
call_consensus() (in module dynast.preprocessing),

56
call_consensus() (in module dy-

nast.preprocessing.consensus), 43
call_consensus_from_reads() (in module dy-

nast.preprocessing.consensus), 43
call_consensus_from_reads_process() (in module

dynast.preprocessing.consensus), 43
check_bam_contains_duplicate() (in module dy-

nast.preprocessing), 55
check_bam_contains_duplicate() (in module dy-

nast.preprocessing.bam), 41
check_bam_contains_secondary() (in module dy-

nast.preprocessing), 55
check_bam_contains_secondary() (in module dy-

nast.preprocessing.bam), 41

91

dynast, Release 0.2.0

check_bam_contains_unmapped() (in module dy-
nast.preprocessing), 55

check_bam_contains_unmapped() (in module dy-
nast.preprocessing.bam), 41

check_bam_is_paired() (in module dy-
nast.preprocessing.bam), 40

check_bam_tags_exist() (in module dy-
nast.preprocessing.bam), 40

COLUMNS (in module dynast.preprocessing.conversion),
45

combine_arguments() (in module dynast.utils), 71
COMMAND_TO_FUNCTION (in module dynast.main), 66
complement_counts() (in module dy-

nast.preprocessing), 57
complement_counts() (in module dy-

nast.preprocessing.conversion), 45
consensus() (in module dynast.consensus), 62
CONSENSUS_BAM_FILENAME (in module dy-

nast.constants), 62
consensus_worker() (in module dy-

nast.preprocessing.consensus), 43
CONVERSION_COLUMNS (in module dy-

nast.preprocessing.conversion), 45
CONVERSION_COMPLEMENT (in module dy-

nast.preprocessing), 57
CONVERSION_COMPLEMENT (in module dy-

nast.preprocessing.conversion), 45
CONVERSION_CSV_COLUMNS (in module dy-

nast.preprocessing.bam), 38
CONVERSION_IDX (in module dy-

nast.preprocessing.conversion), 45
CONVERSIONS_FILENAME (in module dynast.constants),

62
CONVERSIONS_INDEX_FILENAME (in module dy-

nast.constants), 62
CONVERSIONS_PARSER (in module dy-

nast.preprocessing.conversion), 45
CONVS_FILENAME (in module dynast.constants), 62
count() (in module dynast.count), 63
count_conversions() (in module dy-

nast.preprocessing), 57
count_conversions() (in module dy-

nast.preprocessing.conversion), 47
count_conversions_part() (in module dy-

nast.preprocessing.conversion), 47
COUNT_DIR (in module dynast.constants), 62
count_no_conversions() (in module dy-

nast.preprocessing.conversion), 46
COUNTS_PREFIX (in module dynast.constants), 62
COUNTS_SPLIT_THRESHOLD (in module dynast.config),

61
counts_to_matrix() (in module dynast.utils), 73
COVERAGE_FILENAME (in module dynast.constants), 62
COVERAGE_INDEX_FILENAME (in module dy-

nast.constants), 62
COVERAGE_PARSER (in module dy-

nast.preprocessing.coverage), 48
CSV_COLUMNS (in module dy-

nast.preprocessing.conversion), 45

D
decompress_gzip (in module dynast.utils), 70
deduplicate_counts() (in module dy-

nast.preprocessing), 58
deduplicate_counts() (in module dy-

nast.preprocessing.conversion), 45
deduplicate_counts_part() (in module dy-

nast.preprocessing.conversion), 46
detect_snps() (in module dynast.preprocessing), 59
detect_snps() (in module dynast.preprocessing.snp),

51
display_progress_with_counter() (in module dy-

nast.utils), 72
downsample_counts() (in module dynast.utils), 72
drop_multimappers() (in module dy-

nast.preprocessing.conversion), 45
drop_multimappers_part() (in module dy-

nast.preprocessing.conversion), 46
dynast

module, 25
dynast.align

module, 60
dynast.benchmarking

module, 25
dynast.benchmarking.simulation

module, 25
dynast.config

module, 61
dynast.consensus

module, 61
dynast.constants

module, 62
dynast.count

module, 63
dynast.estimate

module, 63
dynast.estimation

module, 27
dynast.estimation.p_c

module, 27
dynast.estimation.p_e

module, 29
dynast.estimation.pi

module, 30
dynast.logging

module, 64
dynast.main

module, 64

92 Index

dynast, Release 0.2.0

dynast.preprocessing
module, 36

dynast.preprocessing.aggregation
module, 36

dynast.preprocessing.bam
module, 37

dynast.preprocessing.consensus
module, 42

dynast.preprocessing.conversion
module, 44

dynast.preprocessing.coverage
module, 48

dynast.preprocessing.snp
module, 50

dynast.ref
module, 66

dynast.stats
module, 66

dynast.technology
module, 67

dynast.utils
module, 68

E
end() (dynast.stats.Stats method), 67
end() (dynast.stats.Step method), 67
estimate() (in module dy-

nast.benchmarking.simulation), 26
estimate() (in module dynast.estimate), 63
ESTIMATE_DIR (in module dynast.constants), 62
estimate_p_c() (in module dynast.estimation), 33
estimate_p_c() (in module dynast.estimation.p_c), 28
estimate_p_e() (in module dynast.estimation), 34
estimate_p_e() (in module dynast.estimation.p_e), 30
estimate_p_e_control() (in module dy-

nast.estimation), 34
estimate_p_e_control() (in module dy-

nast.estimation.p_e), 29
estimate_p_e_nasc() (in module dynast.estimation),

34
estimate_p_e_nasc() (in module dy-

nast.estimation.p_e), 30
estimate_pi() (in module dynast.estimation), 35
estimate_pi() (in module dynast.estimation.pi), 32
expectation_maximization() (in module dy-

nast.estimation.p_c), 28
expectation_maximization_nasc() (in module dy-

nast.estimation.p_c), 28
extract_conversions() (in module dy-

nast.preprocessing.snp), 51
extract_conversions_part() (in module dy-

nast.preprocessing.snp), 51

F
fit_stan_mcmc() (in module dynast.estimation.pi), 32
flatten_dict_values (in module dynast.utils), 70
flatten_dictionary (in module dynast.utils), 70
flatten_iter (in module dynast.utils), 70

G
generate_sequence() (in module dy-

nast.benchmarking.simulation), 26
GENES_FILENAME (in module dynast.constants), 62
get_available_memory() (in module dynast.utils), 72
get_file_descriptor_limit() (in module dy-

nast.utils), 71
get_max_file_descriptor_limit() (in module dy-

nast.utils), 71
get_STAR_binary_path() (in module dynast.utils), 71
get_STAR_version() (in module dynast.utils), 71
get_tags_from_bam() (in module dy-

nast.preprocessing), 55
get_tags_from_bam() (in module dy-

nast.preprocessing.bam), 40
guess_beta_parameters() (in module dy-

nast.estimation.pi), 31

I
increase_file_descriptor_limit() (in module dy-

nast.utils), 72
initializer() (in module dy-

nast.benchmarking.simulation), 26
initializer() (in module dynast.estimation.pi), 31

L
logger (in module dynast.logging), 64

M
main() (in module dynast.main), 66
make_pool_with_counter() (in module dynast.utils),

72
merge_aggregates() (in module dy-

nast.preprocessing), 54
merge_aggregates() (in module dy-

nast.preprocessing.aggregation), 36
merge_dictionaries (in module dynast.utils), 70
mkstemp (in module dynast.utils), 70
MODEL_NAME (in module dynast.config), 61
MODEL_PATH (in module dynast.config), 61
MODELS_DIR (in module dynast.config), 61
module

dynast, 25
dynast.align, 60
dynast.benchmarking, 25
dynast.benchmarking.simulation, 25
dynast.config, 61

Index 93

dynast, Release 0.2.0

dynast.consensus, 61
dynast.constants, 62
dynast.count, 63
dynast.estimate, 63
dynast.estimation, 27
dynast.estimation.p_c, 27
dynast.estimation.p_e, 29
dynast.estimation.pi, 30
dynast.logging, 64
dynast.main, 64
dynast.preprocessing, 36
dynast.preprocessing.aggregation, 36
dynast.preprocessing.bam, 37
dynast.preprocessing.consensus, 42
dynast.preprocessing.conversion, 44
dynast.preprocessing.coverage, 48
dynast.preprocessing.snp, 50
dynast.ref, 66
dynast.stats, 66
dynast.technology, 67
dynast.utils, 68

N
NASC_ARGUMENTS (in module dynast.config), 61

O
open_as_text (in module dynast.utils), 70

P
P_C_PREFIX (in module dynast.constants), 63
P_E_FILENAME (in module dynast.constants), 62
PACKAGE_PATH (in module dynast.config), 61
parse_align() (in module dynast.main), 65
parse_all_reads() (in module dynast.preprocessing),

55
parse_all_reads() (in module dy-

nast.preprocessing.bam), 41
parse_consensus() (in module dynast.main), 65
parse_count() (in module dynast.main), 65
PARSE_DIR (in module dynast.constants), 62
parse_estimate() (in module dynast.main), 65
parse_read_contig() (in module dy-

nast.preprocessing.bam), 39
parse_ref() (in module dynast.main), 65
patch_mp_connection_bpo_17560() (in module dy-

nast.utils), 74
PLATE_TECHNOLOGIES (in module dynast.technology), 67
PLATFORM (in module dynast.config), 61
plot_estimations() (in module dy-

nast.benchmarking.simulation), 27
print_technologies() (in module dynast.main), 64

R
RATES_FILENAME (in module dynast.constants), 62

read_aggregates() (in module dynast.preprocessing),
54

read_aggregates() (in module dy-
nast.preprocessing.aggregation), 36

read_alignments() (in module dynast.preprocessing),
56

read_alignments() (in module dy-
nast.preprocessing.bam), 38

read_conversions() (in module dy-
nast.preprocessing), 56

read_conversions() (in module dy-
nast.preprocessing.bam), 39

read_counts() (in module dynast.preprocessing), 58
read_counts() (in module dy-

nast.preprocessing.conversion), 45
read_coverage() (in module dynast.preprocessing), 59
read_coverage() (in module dy-

nast.preprocessing.coverage), 48
read_p_c() (in module dynast.estimation), 33
read_p_c() (in module dynast.estimation.p_c), 27
read_p_e() (in module dynast.estimation), 34
read_p_e() (in module dynast.estimation.p_e), 29
read_pi() (in module dynast.estimation), 35
read_pi() (in module dynast.estimation.pi), 31
read_pickle (in module dynast.utils), 70
read_rates() (in module dynast.preprocessing), 54
read_rates() (in module dy-

nast.preprocessing.aggregation), 36
read_snp_csv() (in module dynast.preprocessing), 59
read_snp_csv() (in module dynast.preprocessing.snp),

50
read_snps() (in module dynast.preprocessing), 59
read_snps() (in module dynast.preprocessing.snp), 50
RECOMMENDED_MEMORY (in module dynast.config), 61
ref() (in module dynast.ref), 66
results_to_adata() (in module dynast.utils), 74
run_executable (in module dynast.utils), 70

S
save() (dynast.stats.Stats method), 67
select_alignments() (in module dy-

nast.preprocessing), 56
select_alignments() (in module dy-

nast.preprocessing.bam), 39
setup_align_args() (in module dynast.main), 65
setup_consensus_args() (in module dynast.main), 65
setup_count_args() (in module dynast.main), 65
setup_estimate_args() (in module dynast.main), 65
setup_ref_args() (in module dynast.main), 64
simulate() (in module dy-

nast.benchmarking.simulation), 26
simulate_batch() (in module dy-

nast.benchmarking.simulation), 27

94 Index

dynast, Release 0.2.0

simulate_reads() (in module dy-
nast.benchmarking.simulation), 26

SNP_COLUMNS (in module dynast.preprocessing.snp), 50
SNPS_FILENAME (in module dynast.constants), 62
sort_and_index_bam() (in module dy-

nast.preprocessing), 56
sort_and_index_bam() (in module dy-

nast.preprocessing.bam), 41
split_bam() (in module dynast.preprocessing.bam), 41
split_counts() (in module dynast.utils), 73
split_counts_by_velocity() (in module dy-

nast.preprocessing), 58
split_counts_by_velocity() (in module dy-

nast.preprocessing.conversion), 46
split_index() (in module dynast.utils), 72
split_matrix() (in module dynast.utils), 73
STAR_ARGUMENTS (in module dynast.config), 61
STAR_BAI_FILENAME (in module dynast.constants), 62
STAR_BAM_FILENAME (in module dynast.constants), 62
STAR_BARCODES_FILENAME (in module dy-

nast.constants), 62
STAR_FEATURES_FILENAME (in module dy-

nast.constants), 62
STAR_FILTERED_DIR (in module dynast.constants), 62
STAR_GENE_DIR (in module dynast.constants), 62
STAR_genomeGenerate() (in module dynast.ref), 66
STAR_MATRIX_FILENAME (in module dynast.constants),

62
STAR_RAW_DIR (in module dynast.constants), 62
STAR_solo() (in module dynast.align), 60
STAR_SOLO_ARGUMENTS (in module dynast.config), 61
STAR_SOLO_DIR (in module dynast.constants), 62
STAR_VELOCYTO_DIR (in module dynast.constants), 62
start() (dynast.stats.Stats method), 67
start() (dynast.stats.Step method), 67
Stats (class in dynast.stats), 67
STATS_PREFIX (in module dynast.constants), 62
Step (class in dynast.stats), 66
step() (dynast.stats.Stats method), 67
suppress_stdout_stderr (class in dynast.utils), 70

T
TECHNOLOGIES (in module dynast.technology), 67
TECHNOLOGIES_MAP (in module dynast.technology), 68
Technology (in module dynast.technology), 67
to_dict() (dynast.stats.Stats method), 67
to_dict() (dynast.stats.Step method), 67

U
UnsupportedOSException, 70

V
VELOCITY_BLACKLIST (in module dynast.config), 61

W
write_pickle (in module dynast.utils), 70

Index 95

	Getting started
	Installation
	Command-line structure
	Basic usage
	Build the STAR index
	Align FASTQs
	[Optional] Consensus
	Quantify
	[Optional] Estimate

	Pipeline Usage
	Building the STAR index with ref
	Aligning FASTQs with align
	UMI-based technologies
	Plate-based technologies

	Calling consensus sequences with consensus
	Quantifying counts with count
	Basic arguments
	Detecting and filtering SNPs
	Read deduplication modes

	Estimating counts with estimate
	Estimation thresholds
	Estimation on a subset of RNA species
	Grouping cells
	Downsampling

	Control samples

	Technical Information
	Consensus procedure
	Count procedure
	parse
	snp
	quant
	Output Anndata

	Estimate procedure
	aggregate
	estimate
	Output Anndata
	Caveats

	Read groups
	Statistical estimation
	Overview
	Background estimation (pe)
	Induced rate estimation (pc)
	Bayesian inference (g)

	dynast
	Subpackages
	dynast.benchmarking
	Submodules
	dynast.benchmarking.simulation
	Module Contents
	Functions
	Attributes

	dynast.estimation
	Submodules
	dynast.estimation.p_c
	Module Contents
	Functions

	dynast.estimation.p_e
	Module Contents
	Functions

	dynast.estimation.pi
	Module Contents
	Functions
	Attributes

	Package Contents
	Functions

	dynast.preprocessing
	Submodules
	dynast.preprocessing.aggregation
	Module Contents
	Functions

	dynast.preprocessing.bam
	Module Contents
	Functions
	Attributes

	dynast.preprocessing.consensus
	Module Contents
	Functions
	Attributes

	dynast.preprocessing.conversion
	Module Contents
	Functions
	Attributes

	dynast.preprocessing.coverage
	Module Contents
	Functions
	Attributes

	dynast.preprocessing.snp
	Module Contents
	Functions
	Attributes

	Package Contents
	Functions
	Attributes

	Submodules
	dynast.align
	Module Contents
	Functions

	dynast.config
	Module Contents

	dynast.consensus
	Module Contents
	Functions

	dynast.constants
	Module Contents

	dynast.count
	Module Contents
	Functions

	dynast.estimate
	Module Contents
	Functions

	dynast.logging
	Module Contents

	dynast.main
	Module Contents
	Functions
	Attributes

	dynast.ref
	Module Contents
	Functions

	dynast.stats
	Module Contents
	Classes

	dynast.technology
	Module Contents

	dynast.utils
	Module Contents
	Classes
	Functions
	Attributes

	Package Contents

	References
	NASC-seq
	Alignment
	Quantification

	scSLAM-seq
	Alignment
	Quantification

	scNT-seq
	Alignment
	Consensus
	Quantification

	sci-fate
	Alignment
	Consensus
	Quantification

	Indices and tables
	Bibliography
	Python Module Index
	Index

